Hadoop

Discussion of Hadoop. Related subjects include:

MapReduce
Open source database management systems

October 12, 2010

Vertica-Hadoop integration

DBMS/Hadoop integration is a confusing subject. My post on the Cloudera/Aster Data partnership awaits some clarification in the comment thread. A conversation with Vertica left me unsure about some Hadoop/Vertica Year 2 details as well, although I’m doing better after a follow-up call. On the plus side, we also covered some rather cool Hadoop/Vertica product futures, and those seemed easier to understand. 🙂

I say “Year 2” because Hadoop/Vertica integration has been going on since last year. Indeed, Vertica says that there are now over 25 users of the Hadoop/Vertica combination and hence Vertica’s Hadoop connector. Vertica is now introducing — for immediate GA — a new version of its Hadoop connector. So far as I understood:  Read more

October 10, 2010

Partnering with Cloudera

After I criticized the marketing of the Aster/Cloudera partnership, my clients at Aster Data and Cloudera ganged up on me and tried to persuade me I was wrong. Be that as it may, that conversation and others were helpful to me in understanding the core thesis:  Read more

October 6, 2010

eBay followup — Greenplum out, Teradata > 10 petabytes, Hadoop has some value, and more

I chatted with Oliver Ratzesberger of eBay around a Stanford picnic table yesterday (the XLDB 4 conference is being held at Jacek Becla’s home base of SLAC, which used to stand for “Stanford Linear Accelerator Center”). Todd Walter of Teradata also sat in on the latter part of the conversation. Things I learned included:  Read more

August 26, 2010

More on NoSQL and HVSP (or OLRP)

Since posting last Wednesday morning that I’m looking into NoSQL and HVSP, I’ve had a lot of conversations, including with (among others):

Read more

August 21, 2010

The substance of Pentaho’s Hadoop strategy

Pentaho has been talking about a Hadoop-related strategy. Unfortunately, in support of its Hadoop efforts, Pentaho has been — quite insistently — saying things that don’t make a lot of sense to people who know anything about Hadoop.

That said, I think I found four sensible points in Pentaho’s Hadoop strategy, namely:

  1. If you use an ETL tool like Pentaho’s to move things in and out of HDFS, you may be able to orchestrate two more steps in the ETL process than if you used Hadoop’s native orchestration tools.
  2. A lot of what you want to do in MapReduce is things that can be graphically specified in an ETL tool like Pentaho’s. (That would include tokenization or regex.)
  3. If you have some really lightweight BI requirements (ad hoc, reporting, or whatever) against HDFS data, you might be content to do it straight against HDFS, rather than moving the data into a real DBMS. If so, BI tools like Pentaho’s might be useful.
  4. Somebody might want to use a screwy version of MapReduce, where by “screwy” I mean anything that isn’t Cloudera Enterprise, Aster Data SQL/MapReduce, or some other implementation/distribution with a lot of supporting tools. In that case, they might need all the tools they can get.

The first of those points is, in the grand scheme of things, pretty trivial.

The third one makes sense. While Hadoop’s Hive client means you could roll your own integration with your own favorite BI tool in any case, having somebody certify it for you themselves could be nice. So if Pentaho ships something that works before other vendors do, good on them. (Target date seems to be October.)

The fourth one is kind of sad.

But if there’s any shovel-meet-pony aspect to all this — or indeed a reason for writing this blog post — it would be the second point. If one understands data management, but is in the “Oh no! Hadoop wants me to PROGRAM!” crowd, then being able to specify one’s MapReduce might be a really nice alternative versus having to actually code it.

July 23, 2010

Some interesting links

In no particular order:  Read more

June 30, 2010

Cloudera Enterprise and Hadoop evolution

I talked with Cloudera a couple of weeks ago in connection with the impending release of Cloudera Enterprise. I’d say:  Read more

April 16, 2010

Introduction to Datameer

Elder care issues have flared up with a vengeance, so I’m not going to be blogging much for a while, and surely not at any length. That said, my first post about Datameer was never going to be very long, so lets get right to it:

March 13, 2010

The Naming of the Foo

Let’s start from some reasonable premises. Read more

February 22, 2010

TwinFin(i) – Netezza’s version of a parallel analytic platform

Much like Aster Data did in Aster 4.0 and now Aster 4.5, Netezza is announcing a general parallel big data analytic platform strategy. It is called Netezza TwinFin(i), it is a chargeable option for the Netezza TwinFin appliance, and many announced details are on the vague side, with Netezza promising more clarity at or before its Enzee Universe conference in June. At a high level, the Aster and Netezza approaches compare/contrast as follows: Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.