June 2, 2013

SQL-Hadoop architectures compared

The genesis of this post is:

I love my life.

Per Daniel (emphasis mine): Read more

March 18, 2013

DBMS development and other subjects

The cardinal rules of DBMS development

Rule 1: Developing a good DBMS requires 5-7 years and tens of millions of dollars.

That’s if things go extremely well.

Rule 2: You aren’t an exception to Rule 1. 

In particular:

DBMS with Hadoop underpinnings …

… aren’t exceptions to the cardinal rules of DBMS development. That applies to Impala (Cloudera), Stinger (Hortonworks), and Hadapt, among others. Fortunately, the relevant vendors seem to be well aware of this fact. Read more

February 25, 2013

Greenplum HAWQ

My former friends at Greenplum no longer talk to me, so in particular I wasn’t briefed on Pivotal HD and Greenplum HAWQ. Pivotal HD seems to be yet another Hadoop distribution, with the idea that you use Greenplum’s management tools. Greenplum HAWQ seems to be Greenplum tied to HDFS.

The basic idea seems to be much like what I mentioned a few days ago  — the low-level file store for Greenplum can now be something else one has heard of before, namely HDFS (Hadoop Distributed File System, which is also an option for, say, NuoDB). Beyond that, two interesting quotes in a Greenplum blog post are:

When a query starts up, the data is loaded out of HDFS and into the HAWQ execution engine.

and

In addition, it has native support for HBase, supporting HBase predicate pushdown, hive[sic] connectivity, and offering a ton of intelligent features to retrieve HBase data.

The first sounds like the invisible loading that Daniel Abadi wrote about last September on Hadapt’s blog. (Edit: Actually, see Daniel’s comment below.) The second sounds like a good idea that, again, would also be a natural direction for vendors such as Hadapt.

February 22, 2013

Should you offer “complete” analytic applications?

WibiData is essentially on the trajectory:

The same, it turns out, is true of Causata.* Talking with them both the same day led me to write this post. Read more

October 24, 2012

Quick notes on Impala

Edit: There is now a follow-up post on Cloudera Impala with substantially more detail.

In my world it’s possible to have a hasty 2-hour conversation, and that’s exactly what I had with Cloudera last week. We touched on hardware and general adoption, but much of the conversation was about Cloudera Impala, announced today. Like Hive, Impala turns Hadoop into a basic analytic RDBMS, with similar SQL/Hadoop integration benefits to those of Hadapt. In particular:

Beyond that: Read more

October 17, 2012

Hadoop/RDBMS integration: Aster SQL-H and Hadapt

Two of the more interesting approaches for integrating Hadoop and MapReduce with relational DBMS come from my clients at Teradata Aster (via SQL/MR and SQL-H) and Hadapt. In both cases, the story starts:

Of course, there are plenty of differences. Those start: Read more

October 17, 2012

The Teradata Aster Big Analytics Aster/Hadoop appliance

My clients at Teradata are introducing a mix-em/match-em Aster/Hadoop box, officially called the Teradata Aster Big Analytics Appliance. Basics include:

My views on the Teradata Aster Big Analytics Appliance start: Read more

October 16, 2012

Hadapt Version 2

My clients at Hadapt are coming out with a Version 2 to be available in Q1 2013, and perhaps slipstreaming some of the features before then. At that point, it will be reasonable to regard Hadapt as offering:

Solr is in the mix as well.

Hadapt+Hadoop is positioned much more as “better than Hadoop” than “a better scale-out RDBMS”– and rightly so, due to its limitations when viewed strictly from an analytic RDBMS standpoint. I.e., Hadapt is meant for enterprises that want to do several of:

Hadapt has 6 or so production customers, a dozen or so more coming online soon, 35 or so employees (mainly in Cambridge or Poland), reasonable amounts of venture capital, and the involvement of a variety of industry luminaries. Hadapt’s biggest installation seems to have 10s of terabytes of relational data and 100s of TBs of multi-structured; Hadapt is very confident in its ability to scale an order of magnitude beyond that with the Version 2 product, and reasonably confident it could go even further.

At the highest level, Hadapt works like this: Read more

March 31, 2012

Our clients, and where they are located

From time to time, I disclose our vendor client lists. Another iteration is below, the first since a little over a year ago. To be clear:

For reasons explained below, I’ll group the clients geographically. Obviously, companies often have multiple locations, but this is approximately how it works from the standpoint of their interactions with me. Read more

November 8, 2011

Hadapt is moving forward

I’ve talked with my clients at Hadapt a couple of times recently. News highlights include:

The Hadapt product story hasn’t changed significantly from what it was before. Specific points I can add include:   Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.