Notes on TokuDB and GenieDB
Last week, I edited press releases back-to-back-to-back for three clients, all with announcements at this week’s Percona Live. The ones with embargoes ending today are Tokutek and GenieDB.
Tokutek’s news is that they’re open sourcing much of TokuDB, but holding back hot backup for their paid version. I approve of this strategy — “doesn’t lose data” is an important feature, and well worth paying for.
I kid, I kid. Any system has at least a bad way to do backups — e.g. one that involves slowing performance, or perhaps even requires taking applications offline altogether. So the real points of good backup technology are:
- To keep performance steady.
- To make the whole thing as easy to manage as possible.
GenieDB is announcing a Version 2, which is basically a performance release. So in lieu of pretending to have much article-worthy news, GenieDB is taking the opportunity to remind folks of its core marketing messages, with catchphrases such as “multi-regional self-healing MySQL”. Good choice; indeed, I wish more vendors would adopt that marketing tactic.
Along the way, I did learn a bit more about GenieDB. In particular:
- GenieDB is now just backed by a hacked version of InnoDB (no more Berkeley DB Java Edition).
- Why hacked? Because GenieDB appends a Lamport timestamp to every row, which somehow leads to a need to modify how indexes and caching work.
- Benefits of the chamge include performance and simpler (for the vendor) development.
- An arguable disadvantage of the switch is that GenieDB no longer can use Berkeley DB’s key-value interface — but MySQL now has one of those too.
I also picked up some GenieDB company stats I didn’t know before — 9 employees and 2 paying customers.
Related links
Categories: GenieDB, Market share and customer counts, MySQL, NewSQL, Open source, Tokutek and TokuDB | 3 Comments |
Introduction to Deep Information Sciences and DeepDB
I talked Friday with Deep Information Sciences, makers of DeepDB. Much like TokuDB — albeit with different technical strategies — DeepDB is a single-server DBMS in the form of a MySQL engine, whose technology is concentrated around writing indexes quickly. That said:
- DeepDB’s indexes can help you with analytic queries; hence, DeepDB is marketed as supporting OLTP (OnLine Transaction Processing) and analytics in the same system.
- DeepDB is marketed as “designed for big data and the cloud”, with reference to “Volume, Velocity, and Variety”. What I could discern in support of that is mainly:
- DeepDB has been tested at up to 3 terabytes at customer sites and up to 1 billion rows internally.
- Like most other NewSQL and NoSQL DBMS, DeepDB is append-only, and hence could be said to “stream” data to disk.
- DeepDB’s indexes could at some point in the future be made to work well with non-tabular data.*
- The Deep guys have plans and designs for scale-out — transparent sharding and so on.
*For reasons that do not seem closely related to product reality, DeepDB is marketed as if it supports “unstructured” data today.
Other NewSQL DBMS seem “designed for big data and the cloud” to at least the same extent DeepDB is. However, if we’re interpreting “big data” to include multi-structured data support — well, only half or so of the NewSQL products and companies I know of share Deep’s interest in branching out. In particular:
- Akiban definitely does. (Note: Stay tuned for some next-steps company news about Akiban.)
- Tokutek has planted a small stake there too.
- Key-value-store-backed NuoDB and GenieDB probably leans that way. (And SanDisk evidently shut down Schooner’s RDBMS while keeping its key-value store.)
- VoltDB, Clustrix, ScaleDB and MemSQL seem more strictly tabular, except insofar as text search is a requirement for everybody. (Edit: Oops; I forgot about Clustrix’s approach to JSON support.)
Edit: MySQL has some sort of an optional NoSQL interface, and hence so presumably do MySQL-compatible TokuDB, GenieDB, Clustrix, and MemSQL.
Also, some of those products do not today have the transparent scale-out that Deep plans to offer in the future.
One database to rule them all?
Perhaps the single toughest question in all database technology is: Which different purposes can a single data store serve well? — or to phrase it more technically — Which different usage patterns can a single data store support efficiently? Ted Codd was on multiple sides of that issue, first suggesting that relational DBMS could do everything and then averring they could not. Mike Stonebraker too has been on multiple sides, first introducing universal DBMS attempts with Postgres and Illustra/Informix, then more recently suggesting the world needs 9 or so kinds of database technology. As for me — well, I agreed with Mike both times. 🙂
Since this is MUCH too big a subject for a single blog post, what I’ll do in this one is simply race through some background material. To a first approximation, this whole discussion is mainly about data layouts — but only if we interpret that concept broadly enough to comprise:
- Every level of storage (disk, RAM, etc.).
- Indexes, aggregates and raw data alike.
To date, nobody has ever discovered a data layout that is efficient for all usage patterns. As a general rule, simpler data layouts are often faster to write, while fancier ones can boost query performance. Specific tradeoffs include, but hardly are limited to: Read more
Introduction to GenieDB
GenieDB is one of the newer and smaller NewSQL companies. GenieDB’s story is focused on wide-area replication and uptime, coupled to claims about ease and the associated low TCO (Total Cost of Ownership).
GenieDB is in my same family of clients as Cirro.
The GenieDB product is more interesting if we conflate the existing GenieDB Version 1 and a soon-forthcoming (mid-year or so) Version 2. On that basis:
- GenieDB has three tiers.
- GenieDB’s top tier is the usual MySQL front-end.
- GenieDB’s bottom tier is either Berkeley DB or a conventional MySQL storage engine.
- GenieDB’s bottom tier stores your entire database at every node.
- If you replicate locally, GenieDB’s middle tier operates a distributed cache.
- If you replicate wide-area, GenieDB’s middle tier allows active-active/multi-master replication.
The heart of the GenieDB story is probably wide-area replication. Specifics there include: Read more
Categories: Cache, Cloud computing, Clustering, GenieDB, Market share and customer counts, MySQL, NewSQL | 4 Comments |