EMC
Discussion of storage titan EMC, especially its efforts in the data warehouse appliance market. Related subjects include:
- Data warehouse appliances
- (in The Monash Report) VMware
Are analytic RDBMS and data warehouse appliances obsolete?
I used to spend most of my time — blogging and consulting alike — on data warehouse appliances and analytic DBMS. Now I’m barely involved with them. The most obvious reason is that there have been drastic changes in industry structure:
- Many of the independent vendors were swooped up by acquisition.
- None of those acquisitions was a big success.
- Microsoft did little with DATAllegro.
- Netezza struggled with R&D after being bought by IBM. An IBMer recently told me that their main analytic RDBMS engine was BLU.
- I hear about Vertica more as a technology to be replaced than as a significant ongoing market player.
- Pivotal open-sourced Greenplum. I have detected few people who care.
- Ditto for Actian’s offerings.
- Teradata claimed a few large Aster accounts, but I never hear of Aster as something to compete or partner with.
- Smaller vendors fizzled too. Hadapt and Kickfire went to Teradata as more-or-less acquihires. InfiniDB folded. Etc.
- Impala and other Hadoop-based alternatives are technology options.
- Oracle, Microsoft, IBM and to some extent SAP/Sybase are still pedaling along … but I rarely talk with companies that big. 🙂
Simply reciting all that, however, begs the question of whether one should still care about analytic RDBMS at all.
My answer, in a nutshell, is:
Analytic RDBMS — whether on premises in software, in the form of data warehouse appliances, or in the cloud — are still great for hard-core business intelligence, where “hard-core” can refer to ad-hoc query complexity, reporting/dashboard concurrency, or both. But they aren’t good for much else.
Greenplum is being open sourced
While I don’t find the Open Data Platform thing very significant, an associated piece of news seems cooler — Pivotal is open sourcing a bunch of software, with Greenplum as the crown jewel. Notes on that start:
- Greenplum has been an on-again/off-again low-cost player since before its acquisition by EMC, but open source is basically a commitment to having low license cost be permanently on.
- In most regards, “free like beer” is what’s important here, not “free like speech”. I doubt non-Pivotal employees are going to do much hacking on the long-closed Greenplum code base.
- That said, Greenplum forked PostgreSQL a long time ago, and the general PostgreSQL community might gain ideas from some of the work Greenplum has done.
- The only other bit of newly open-sourced stuff I find interesting is HAWQ. Redis was already open source, and I’ve never been persuaded to care about GemFire.
Greenplum, let us recall, is a pretty decent MPP (Massively Parallel Processing) analytic RDBMS. Various aspects of it were oversold at various times, and I’ve never heard that they actually licked concurrency. But Greenplum has long had good SQL coverage and petabyte-scale deployments and a columnar option and some in-database analytics and so on; i.e., it’s legit. When somebody asks me about open source analytic RDBMS to consider, I expect Greenplum to consistently be on the short list.
Further, the low-cost alternatives for analytic RDBMS are adding up. Read more
Categories: Amazon and its cloud, Citus Data, Data warehouse appliances, EAI, EII, ETL, ELT, ETLT, EMC, Greenplum, Hadoop, Infobright, MonetDB, Open source, Pricing | 6 Comments |
Hadoop: And then there were three
Hortonworks, IBM, EMC Pivotal and others have announced a project called “Open Data Platform” to do … well, I’m not exactly sure what. Mainly, it sounds like:
- An attempt to minimize the importance of any technical advantages Cloudera or MapR might have.
- A face-saving way to admit that IBM’s and Pivotal’s insistence on having their own Hadoop distributions has been silly.
- An excuse for press releases.
- A source of an extra logo graphic to put on marketing slides.
Edit: Now there’s a press report saying explicitly that Hortonworks is taking over Pivotal’s Hadoop distro customers (which basically would mean taking over the support contracts and then working to migrate them to Hortonworks’ distro).
The claim is being made that this announcement solves some kind of problem about developing to multiple versions of the Hadoop platform, but to my knowledge that’s a problem rarely encountered in real life. When you already have a multi-enterprise open source community agreeing on APIs (Application Programming interfaces), what API inconsistency remains for a vendor consortium to painstakingly resolve?
Anyhow, it now seems clear that if you want to use a Hadoop distribution, there are three main choices:
- Cloudera’s flavor, whether as software (from Cloudera) or in an appliance (e.g. from Oracle).
- MapR’s flavor, as software from MapR.
- Hortonworks’ flavor, from a number of vendors, including Hortonworks, IBM, Pivotal, Teradata et al.
In saying that, I’m glossing over a few points, such as: Read more
Categories: Amazon and its cloud, Cloudera, EMC, Emulation, transparency, portability, Greenplum, Hadoop, Hortonworks, IBM and DB2, MapR, Open source | 11 Comments |
Thoughts and notes, Thanksgiving weekend 2014
I’m taking a few weeks defocused from work, as a kind of grandpaternity leave. That said, the venue for my Dances of Infant Calming is a small-but-nice apartment in San Francisco, so a certain amount of thinking about tech industries is inevitable. I even found time last Tuesday to meet or speak with my clients at WibiData, MemSQL, Cloudera, Citus Data, and MongoDB. And thus:
1. I’ve been sloppy in my terminology around “geo-distribution”, in that I don’t always make it easy to distinguish between:
- Storing different parts of a database in different geographies, often for reasons of data privacy regulatory compliance.
- Replicating an entire database into different geographies, often for reasons of latency and/or availability/ disaster recovery,
The latter case can be subdivided further depending on whether multiple copies of the data can accept first writes (aka active-active, multi-master, or multi-active), or whether there’s a clear single master for each part of the database.
What made me think of this was a phone call with MongoDB in which I learned that the limit on number of replicas had been raised from 12 to 50, to support the full-replication/latency-reduction use case.
2. Three years ago I posted about agile (predictive) analytics. One of the points was:
… if you change your offers, prices, ad placement, ad text, ad appearance, call center scripts, or anything else, you immediately gain new information that isn’t well-reflected in your previous models.
Subsequently I’ve been hearing more about predictive experimentation such as bandit testing. WibiData, whose views are influenced by a couple of Very Famous Department Store clients (one of which is Macy’s), thinks experimentation is quite important. And it could be argued that experimentation is one of the simplest and most direct ways to increase the value of your data.
3. I’d further say that a number of developments, trends or possibilities I’m seeing are or could be connected. These include agile and experimental predictive analytics in general, as noted in the previous point, along with: Read more
21st Century DBMS success and failure
As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.
DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.
In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.
Buyer inertia is a greater concern.
- A significant minority of enterprises are highly committed to their enterprise DBMS standards.
- Another significant minority aren’t quite as committed, but set pretty high bars for new DBMS products to cross nonetheless.
- FUD (Fear, Uncertainty and Doubt) about new DBMS is often justifiable, about stability and consistent performance alike.
A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.
- First the newer products (from Netezza onwards) were sold to organizations who knew they wanted great performance or price/performance.
- Then it became more about selling “business value” to organizations who needed more convincing about the benefits of great price/performance.
- Then the behemoth vendors became more competitive, as Teradata introduced lower-price models, Oracle introduced Exadata, Sybase got more aggressive with Sybase IQ, IBM bought Netezza, EMC bought Greenplum, HP bought Vertica and so on. It is now hard for a non-behemoth analytic RDBMS vendor to make headway at large enterprise accounts.
- Meanwhile, Hadoop has emerged as serious competitor for at least some analytic data management, especially but not only at internet companies.
Otherwise I’d say: Read more
RDBMS and their bundle-mates
Relational DBMS used to be fairly straightforward product suites, which boiled down to:
- A big SQL interpreter.
- A bunch of administrative and operational tools.
- Some very optional add-ons, often including an application development tool.
Now, however, most RDBMS are sold as part of something bigger.
- Oracle has hugely thickened its stack, as part of an Innovator’s Solution strategy — hardware, middleware, applications, business intelligence, and more.
- IBM has moved aggressively to a bundled “appliance” strategy. Even before that, IBM DB2 long sold much better to committed IBM accounts than as a software-only offering.
- Microsoft SQL Server is part of a stack, starting with the Windows operating system.
- Sybase was an exception to this rule, with thin(ner) stacks for both Adaptive Server Enterprise and Sybase IQ. But Sybase is now owned by SAP, and increasingly integrated as a business with …
- … SAP HANA, which is closely associated with SAP’s applications.
- Teradata has always been a hardware/software vendor. The most successful of its analytic DBMS rivals, in some order, are:
- Netezza, a pure appliance vendor, now part of IBM.
- Greenplum, an appliance-mainly vendor for most (not all) of its existence, and in particular now as a part of EMC Pivotal.
- Vertica, more of a software-only vendor than the others, but now owned by and increasingly mainstreamed into hardware vendor HP.
- MySQL’s glory years were as part of the “LAMP” stack.
- Various thin-stack RDBMS that once were or could have been important market players … aren’t. Examples include Progress OpenEdge, IBM Informix, and the various strays adopted by Actian.
Hadoop distributions
Elephants! Elephants!
One elephant went out to play
Sat on a spider’s web one day.
They had such enormous fun
Called for another elephant to come.
Elephants! Elephants!
Two elephants went out to play
Sat on a spider’s web one day.
They had such enormous fun
Called for another elephant to come.
Elephants! Elephants!
Three elephants went out to play
Etc.
— Popular children’s song
It’s Strata week, with much Hadoop news, some of which I’ve been briefed on and some of which I haven’t. Rather than delve into fine competitive details, let’s step back and consider some generalities. First, about Hadoop distributions and distro providers:
- Conceptually, the starting point for a “Hadoop distribution” is some version of Apache Hadoop.
- Hortonworks is still focused on Hadoop 1 (without YARN and so on), because that’s what’s regarded as production-ready. But Hortonworks does like HCatalog.
- Cloudera straddles Hadoop 1 and Hadoop 2, shipping aspects of Hadoop 2 but not recommending them for production use.
- Some of the newer distros seem to be based on Hadoop 2, if the markitecture slides are to be believed.
- Optionally, the version numbers of different parts of Hadoop in a distribution could be a little mismatched, if the distro provider takes responsibility for testing them together.
- Cloudera seems more willing to do that than Hortonworks.
- Different distro providers may choose different sets of Apache Hadoop subprojects to include.
- Cloudera seems particularly expansive in what it is apt to include. Perhaps not coincidentally, Cloudera folks started various Hadoop subprojects.
- Optionally, distro providers’ additional proprietary code can be included, to be used either in addition to or instead of Apache Hadoop code. (In the latter case, marketing can then ensue about whether this is REALLY a Hadoop distribution.)
- Hortonworks markets from a “more open source than thou” stance, even though:
- It is not a purist in that regard.
- That marketing message is often communicated by Hortonworks’ very closed-source partners.
- Several distro providers, notably Cloudera, offer management suites as a big part of their proprietary value-add. Hortonworks, however, is focused on making open-source Ambari into a competitive management tool.
- Performance is another big area for proprietary code, especially from vendors who look at HDFS (Hadoop Distributed File System) and believe they can improve on it.
- I conjecture packaging/installation code is often proprietary, but that’s a minor issue that doesn’t get mentioned much.
- Hortonworks markets from a “more open source than thou” stance, even though:
- Optionally, third parties’ code can be provided, open or closed source as the case may be.
Most of the same observations could apply to Hadoop appliance vendors.
Categories: Cloudera, Data warehouse appliances, EMC, Greenplum, Hadoop, Hortonworks, IBM and DB2, Intel, MapR, Market share and customer counts | 5 Comments |
Greenplum HAWQ
My former friends at Greenplum no longer talk to me, so in particular I wasn’t briefed on Pivotal HD and Greenplum HAWQ. Pivotal HD seems to be yet another Hadoop distribution, with the idea that you use Greenplum’s management tools. Greenplum HAWQ seems to be Greenplum tied to HDFS.
The basic idea seems to be much like what I mentioned a few days ago — the low-level file store for Greenplum can now be something else one has heard of before, namely HDFS (Hadoop Distributed File System, which is also an option for, say, NuoDB). Beyond that, two interesting quotes in a Greenplum blog post are:
When a query starts up, the data is loaded out of HDFS and into the HAWQ execution engine.
and
In addition, it has native support for HBase, supporting HBase predicate pushdown, hive[sic] connectivity, and offering a ton of intelligent features to retrieve HBase data.
The first sounds like the invisible loading that Daniel Abadi wrote about last September on Hadapt’s blog. (Edit: Actually, see Daniel’s comment below.) The second sounds like a good idea that, again, would also be a natural direction for vendors such as Hadapt.
Categories: EMC, Greenplum, Hadapt, Hadoop, HBase, SQL/Hadoop integration | 14 Comments |
Notes and links, February 17, 2013
1. It boggles my mind that some database technology companies still don’t view compression as a major issue. Compression directly affects storage and bandwidth usage alike — for all kinds of storage (potentially including RAM) and for all kinds of bandwidth (network, I/O, and potentially on-server).
Trading off less-than-maximal compression so as to minimize CPU impact can make sense. Having no compression at all, however, is an admission of defeat.
2. People tend to misjudge Hadoop’s development pace in either of two directions. An overly expansive view is to note that some people working on Hadoop are trying to make it be all things for all people, and to somehow imagine those goals will soon be achieved. An overly narrow view is to note an important missing feature in Hadoop, and think there’s a big business to be made out of offering it alone.
At this point, I’d guess that Cloudera and Hortonworks have 500ish employees combined, many of whom are engineers. That allows for a low double-digit number of 5+ person engineering teams, along with a number of smaller projects. The most urgently needed features are indeed being built. On the other hand, a complete monument to computing will not soon emerge.
3. Schooner’s acquisition by SanDisk has led to the discontinuation of Schooner’s SQL DBMS SchoonerSQL. Schooner’s flash-optimized key-value store Membrain continues. I don’t have details, but the Membrain web page suggests both data store and cache use cases.
4. There’s considerable personnel movement at Boston-area database technology companies right now. Please ping me directly if you care.
Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations
To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.
Gartner seems confused about Kognitio’s products and history alike.
- Gartner calls Kognitio an “in-memory” DBMS, which is not accurate.
- Gartner doesn’t remark on Kognitio’s worst-in-class* compression.
- Gartner gives Kognitio oddly high marks for a late, me-too Hadoop integration strategy.
- Gartner writes as if Kognitio’s next attempt at the US market will be the first one, which is not the case.
- Gartner says that Kognitio pioneered data warehouse SaaS (Software as a Service), which actually has existed since the pre-relational 1970s.
Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.
* non-existent
In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more