Cassandra
Analysis and discussion of the open source data management project Cassandra. Related subjects include:
- Riptano, a company founded to commercialize Cassandra
- The NoSQL movement
- Open source data management technologies
- Facebook, the originator of Cassandra
Imanis Data
I talked recently with the folks at Imanis Data. For starters:
- The point of Imanis is to make copies of your databases, for purposes such as backup/restore, test/analysis, or compliance-driven archiving. (That’s in declining order of current customer activity.) Another use is migration via restoring to a different cluster than the one that created the data in the first place.
- The data can come from NoSQL database managers, from Hadoop, or from Vertica. (Again, that’s in declining order.)
- As you might imagine, Imanis makes incremental backups; the only full backup is the first one you do for that database.
- “Imanis” is a new name; the previous name was “Talena”.
Categories: Cassandra, Hadoop, Market share and customer counts, NoSQL, Predictive modeling and advanced analytics, Vertica Systems | 1 Comment |
Notes on DataStax and Cassandra
I visited DataStax on my recent trip. That was a tipping point leading to my recent discussions of NoSQL DBAs and misplaced fear of vendor lock-in. But of course I also learned some things about DataStax and Cassandra themselves.
On the customer side:
- DataStax customers still overwhelmingly use Cassandra for internet back-ends — web, mobile or otherwise as the case might be.
- This includes — and “includes” might be understating the point — traditional enterprises worried about competition from internet-only ventures.
Customers in large numbers want cloud capabilities, as a potential future if not a current need.
One customer example was a large retailer, who in the past was awful at providing accurate inventory information online, but now uses Cassandra for that. DataStax brags that its queries come back in 20 milliseconds, but that strikes me as a bit beside the point; what really matters is that data accuracy has gone from “batch” to some version of real-time. Also, Microsoft is a DataStax customer, using Cassandra (and Spark) for the Office 365 backend, or at least for the associated analytics.
Per Patrick McFadin, the four biggest things in DataStax Enterprise 5 are: Read more
Categories: Cassandra, DataStax, Microsoft and SQL*Server, NoSQL, Specific users | 2 Comments |
Notes on vendor lock-in
Vendor lock-in is an important subject. Everybody knows that. But few of us realize just how complicated the subject is, nor how riddled it is with paradoxes. Truth be told, I wasn’t fully aware either. But when I set out to write this post, I found that it just kept growing longer.
1. The most basic form of lock-in is:
- You do application development for a target set of platform technologies.
- Your applications can’t run without those platforms underneath.
- Hence, you’re locked into those platforms.
2. Enterprise vendor standardization is closely associated with lock-in. The core idea is that you have a mandate or strong bias toward having different apps run over the same platforms, because:
- That simplifies your environment, requiring less integration and interoperability.
- That simplifies your staffing; the same skill sets apply to multiple needs and projects.
- That simplifies your vendor support relationships; there’s “one throat to choke”.
- That simplifies your price negotiation.
3. That last point is double-edged; you have more power over suppliers to whom you give more business, but they also have more power over you. The upshot is often an ELA (Enterprise License Agreement), which commonly works:
- For a fixed period of time, the enterprise may use as much of a given product set as they want, with costs fixed in advance.
- A few years later, the price is renegotiated, based on then-current levels of usage.
Categories: Amazon and its cloud, Buying processes, Cassandra, Exadata, Facebook, IBM and DB2, Microsoft and SQL*Server, MongoDB, Neo Technology and Neo4j, Open source, Oracle, SAP AG | 12 Comments |
Notes from a long trip, July 19, 2016
For starters:
- I spent three weeks in California on a hybrid personal/business trip. I had a bunch of meetings, but not three weeks’ worth.
- The timing was awkward for most companies I wanted to see. No blame accrues to those who didn’t make themselves available.
- I came back with a nasty cough. Follow-up phone calls aren’t an option until next week.
- I’m impatient to start writing. Hence tonight’s posts. But it’s difficult for a man and his cough to be productive at the same time.
A running list of recent posts is:
- As a companion to this post, I’m publishing a very long one on vendor lock-in.
- Spark and Databricks are both prospering, and of course enhancing their technology as well.
- Ditto DataStax.
- Flink is interesting as the streaming technology it’s now positioned to be, rather than the overall Spark alternative it used to be positioned as but which the world didn’t need.
Subjects I’d like to add to that list include:
- MemSQL, Zoomdata, and Neo Technology (also prospering).
- Cloudera (multiple topics, as usual).
- Analytic SQL engines (“traditional” analytic RDBMS aren’t doing well).
- Microsoft’s reinvention (it feels real).
- Metadata (it’s ever more of a thing).
- Machine learning (it’s going to be a big portion of my research going forward).
- Transitions to the cloud — this subject affects almost everything else.
Cassandra and privacy requirements
For starters:
- I’ve suggested in the past that multi-data-center capabilities are important for “data sovereignty”/geo-compliance.
- The need for geo-compliance just got a lot stronger, with the abolition of the European Union’s Safe Harbour rule for the US. If you collect data in multiple countries, you should be at least thinking about geo-compliance.
- Cassandra is an established leader in multi-data-center operation.
But when I made that connection and checked in accordingly with my client Patrick McFadin at DataStax, I discovered that I’d been a little confused about how multi-data-center Cassandra works. The basic idea holds water, but the details are not quite what I was envisioning.
The story starts:
- Cassandra groups nodes into logical “data centers” (i.e. token rings).
- As a best practice, each physical data center can contain one or more logical data center, but not vice-versa.
- There are two levels of replication — within a single logical data center, and between logical data centers.
- Replication within a single data center is planned in the usual way, with the principal data center holding a database likely to have a replication factor of 3.
- However, copies of the database held elsewhere may have different replication factors …
- … and can indeed have different replication factors for different parts of the database.
In particular, a remote replication factor for Cassandra can = 0. When that happens, then you have data sitting in one geographical location that is absent from another geographical location; i.e., you can be in compliance with laws forbidding the export of certain data. To be clear (and this contradicts what I previously believed and hence also implied in this blog):
- General multi-data-center operation is not what gives you geo-compliance, because the default case is that the whole database is replicated to each data center.
- Instead, you get that effect by tweaking your specific replication settings.
Categories: Cassandra, Clustering, DataStax, HBase, NoSQL, Open source, Specific users, Surveillance and privacy | 3 Comments |
Basho and Riak
Basho was on my (very short) blacklist of companies with whom I refuse to speak, because they have lied about the contents of previous conversations. But Tony Falco et al. are long gone from the company. So when Basho’s new management team reached out, I took the meeting.
For starters:
- Basho management turned over significantly 1-2 years ago. The main survivors from the old team are 1 each in engineering, sales, and services.
- Basho moved its headquarters to Bellevue, WA. (You get one guess as to where the new CEO lives.) Engineering operations are very distributed geographically.
- Basho claims that it is much better at timely product shipments than it used to be. Its newest product has a planned (or at least hoped-for) 8-week cadence for point releases.
- Basho’s revenue is ~90% subscription.
- Basho claims >200 enterprise clients, vs. 100-120 when new management came in. Unfortunately, I forgot to ask the usual questions about divisions vs. whole organizations, OEM sell-through vs. direct, etc.
- Basho claims an average contract value of >$100K, typically over 2-3 years. $9 million of that (which would be close to half the total, actually), comes from 2 particular deals of >$4 million each.
Basho’s product line has gotten a bit confusing, but as best I understand things the story is:
- There’s something called Riak Core, which isn’t even a revenue-generating product. However, it’s an open source project with some big users (e.g. Goldman Sachs, Visa), and included in pretty much everything else Basho promotes.
- Riak KV is the key-value store previously known as Riak. It generates the lion’s share of Basho’s revenue.
- Riak S2 is an emulation of Amazon S3. Basho thinks that Riak KV loses efficiency when objects get bigger than 1 MB or so, and that’s when you might want to use Riak S2 in addition or instead.
- Riak TS is for time series, and just coming out now.
- Also in the mix are some (extra charge) connectors for Redis and Spark. Presumably, there are more of these to come.
- There’s an umbrella marketing term of “Basho Data Platform”.
Technical notes on some of that include: Read more
Notes on privacy and surveillance, October 11, 2015
1. European Union data sovereignty laws have long had a “Safe Harbour” rule stating it was OK to ship data to the US. Per the case Maximilian Schrems v Data Protection Commissioner, this rule is now held to be invalid. Angst has ensued, and rightly so.
The core technical issues are roughly:
- Data is usually in one logical database. Data may be replicated locally, for availability and performance. It may be replicated remotely, for availability, disaster recovery, and performance. But it’s still usually logically in one database.
- Now remote geographic partitioning may be required by law. Some technologies (e.g. Cassandra) support that for a single logical database. Some don’t.
- Even under best circumstances, hosting and administrative costs are likely to be higher when a database is split across more geographies (especially when the count is increased from 1 to 2).
Facebook’s estimate of billions of dollars in added costs is not easy to refute.
My next set of technical thoughts starts: Read more
Categories: Cassandra, DataStax, Surveillance and privacy | 1 Comment |
DataStax and Cassandra update
MongoDB isn’t the only company I reached out to recently for an update. Another is DataStax. I chatted mainly with Patrick McFadin, somebody with whom I’ve had strong consulting relationships at a user and vendor both. But Rachel Pedreschi contributed the marvelous phrase “twinkling dashboard”.
It seems fair to say that in most cases:
- Cassandra is adopted for operational applications, specifically ones with requirements for extreme uptime and/or extreme write speed. (Of course, it should also be the case that NoSQL data structures are a good fit.)
- Spark, including SparkSQL, and Solr are seen primarily as ways to navigate or analyze the resulting data.
Those generalities, in my opinion, make good technical sense. Even so, there are some edge cases or counterexamples, such as:
- DataStax trumpets British Gas‘ plans collecting a lot of sensor data and immediately offering it up for analysis.*
- Safeway uses Cassandra for a mobile part of its loyalty program, scoring customers and pushing coupons at them.
- A large title insurance company uses Cassandra-plus-Solr to manage a whole lot of documents.
*And so a gas company is doing lightweight analysis on boiler temperatures, which it regards as hot data. 🙂
While most of the specifics are different, I’d say similar things about MongoDB, Cassandra, or any other NoSQL DBMS that comes to mind: Read more
IT-centric notes on the future of health care
It’s difficult to project the rate of IT change in health care, because:
- Health care is suffused with technology — IT, medical device and biotech alike — and hence has the potential for rapid change. However, it is also the case that …
- … health care is heavily bureaucratic, political and regulated.
Timing aside, it is clear that health care change will be drastic. The IT part of that starts with vastly comprehensive electronic health records, which will be accessible (in part or whole as the case may be) by patients, care givers, care payers and researchers alike. I expect elements of such records to include:
- The human-generated part of what’s in ordinary paper health records today, but across a patient’s entire lifetime. This of course includes notes created by doctors and other care-givers.
- Large amounts of machine-generated data, including:
- The results of clinical tests. Continued innovation can be expected in testing, for reasons that include:
- Most tests exploit electronic technology. Progress in electronics is intense.
- Biomedical research is itself intense.
- In particular, most research technologies (for example gene sequencing) can be made cheap enough over time to be affordable clinically.
- The output of consumer health-monitoring devices — e.g. Fitbit and its successors. The buzzword here is “quantified self”, but what it boils down to is that every moment of our lives will be measured and recorded.
- The results of clinical tests. Continued innovation can be expected in testing, for reasons that include:
These vastly greater amounts of data cited above will allow for greatly changed analytics.
Read more
BI for NoSQL — some very early comments
Over the past couple years, there have been various quick comments and vague press releases about “BI for NoSQL”. I’ve had trouble, however, imagining what it could amount to that was particularly interesting, with my confusion boiling down to “Just what are you aggregating over what?” Recently I raised the subject with a few leading NoSQL companies. The result is that my confusion was expanded. 🙂 Here’s the small amount that I have actually figured out.
As I noted in a recent post about data models, many databases — in particular SQL and NoSQL ones — can be viewed as collections of <name, value> pairs.
- In a relational database, a record is a collection of <name, value> pairs with a particular and predictable — i.e. derived from the table definition — sequence of names. Further, a record usually has an identifying key (commonly one of the first values).
- Something similar can be said about structured-document stores — i.e. JSON or XML — except that the sequence of names may not be consistent from one document to the next. Further, there’s commonly a hierarchical relationship among the names.
- For these purposes, a “wide-column” NoSQL store like Cassandra or HBase can be viewed much as a structured-document store, albeit with different performance optimizations and characteristics and a different flavor of DML (Data Manipulation Language).
Consequently, a NoSQL database can often be viewed as a table or a collection of tables, except that:
- The NoSQL database is likely to have more null values.
- The NoSQL database, in a naive translation toward relational, may have repeated values. So a less naive translation might require extra tables.
That’s all straightforward to deal with if you’re willing to write scripts to extract the NoSQL data and transform or aggregate it as needed. But things get tricky when you try to insist on some kind of point-and-click. And by the way, that last comment pertains to BI and ETL (Extract/Transform/Load) alike. Indeed, multiple people I talked with on this subject conflated BI and ETL, and they were probably right to do so.