Aster Data

Analysis of data warehouse DBMS vendor Aster Data. Related subjects include:

October 15, 2009

MapReduce webinars and annotated slides

As previously noted, I’m giving a webinar twice today — i.e., Thursday, October 15 — at 10:00 am and 1:00 pm Eastern time.

October 10, 2009

How 30+ enterprises are using Hadoop

MapReduce is definitely gaining traction, especially but by no means only in the form of Hadoop. In the aftermath of Hadoop World, Jeff Hammerbacher of Cloudera walked me quickly through 25 customers he pulled from Cloudera’s files. Facts and metrics ranged widely, of course:

Read more

October 9, 2009

I have some presentations coming up (all on October Thursdays)

On Thursday, October 15, and two different times (10:00 am and 1:00 pm Eastern time), I’ll be giving a webinar for Aster Data on MapReduce. The content is very much work in progress, but it definitely will:

Then, on the evening of Thursday, October 22, there’s something called the Boston Big Data Summit, in Waltham, where “Big Data” evidently is to be construed as anything from a few terabytes on up.  (Things are smaller in the Northeast than in California …) It’s being put together by Amrith Kumar (who I don’t really know) and Bob Zurek (who everybody knows). This is the inaguaral meeting. It seems I’m both giving the keynote and running the subsequent panel, one of whose participants will be Ellen Rubin. Read more

October 1, 2009

MapReduce tidbits

I’ve never had children, and so have never had to supervise squabbling siblings, each accusing the other of selfishness and insufficient sharing. Perhaps the MapReduce vendors are a form of karmic payback. Be that as it may, my client Cloudera has organized Hadoop World on October 2 in New York, and my other client Aster Data is hosting a MapReduce-centric Big Data Summit the night before, at the same venue. Even if you don’t go, both conference’s agenda pages offer a peek into what’s going on in MapReduce applications. I’m not going either, but even so I hope to post an overview of MapReduce uses after the conferences serve to publicize some of them.

Even better, I plan to hold a couple of webinars on MapReduce, the first at 10 am (blech) and 1 pm Eastern time on October 15. They’re sponsored by Aster Data, and so will have a strong SQL/MapReduce orientation.

In connection with its conference, Aster is introducing an nCluster-Hadoop connector — i.e., a loader from HDFS (Hadoop Distributed File System) implemented in SQL/MapReduce. In particular: Read more

September 13, 2009

Fault-tolerant queries

MapReduce/Hadoop fans sometimes raise the question of query fault-tolerance. That is — if a node fails, does the query need to be restarted, or can it keep going? For example, Daniel Abadi et al. trumpet query fault-tolerance as one of the virtues of HadoopDB. Some of the scientists at XLDB spoke of query fault-tolerance as being a good reason to leave 100s or 1000s of terabytes of data in Hadoop-managed file systems.

When we discussed this subject a few months ago in a couple of comment threads, it seemed to be the case that:

This raises an obvious (pair of) question(s) — why and/or when would anybody ever care about query fault-tolerance? Read more

July 1, 2009

Correction to a recent quote

I’m quoted in a recent article around Aster’s appliance announcement as saying data warehouse appliances are more suitable for small workgroups of analysts crunching small amounts of data than they are for other uses.

But that’s not what I think at all.

I do think the ease-of-administration pitch for appliances makes them particularly well suited for users who want to scrape by without doing much database adminstration. This is especially appealing to departments or smaller enterprises. And the first/best scenario that comes to mind is indeed a small team of analysts, with good SQL skills but lightweight DBA experience, although Netezza has proved that many other kinds of users can find appliances appealing as well.

But that small team of analysts may maintain the largest database in the firm.

And by the way — notwithstanding the MySpace counterexample, most of Aster’s initial customers had <10 terabyte databases, and I think indeed <5 terabyte. The “frontline” pitch succeeded for Aster before (MySpace again aside) any better-big-data-crunching story did.

June 29, 2009

Aster Data enters the appliance game

Aster Data is rolling out a line of nCluster appliances today.  Highlights include:

I don’t have a lot more to add right now, mainly because I wrote at some length about Aster’s non-appliance-specific, non-MapReduce technology and positioning a couple of weeks ago.

June 25, 2009

My current customer list among the analytic DBMS specialists

(This is an updated version of an August, 2008 post.)

One of my favorite pages on the Monash Research website is the list of many current and a few notable past customers. (Another favorite page is the one for testimonials.) For a variety of reasons, I won’t undertake to be more precise about my current customer list than that. But I don’t think it would hurt anything to list the analytic/data warehouse DBMS/appliance specialists in the group. They are:

All of those are Monash Advantage members.

If you care about all this, you may also be interested in the rest of my standards and disclosures.

June 16, 2009

Aster Data on parallelism

Aster Data’s core claim boils down to “We do parallelism better.” Aster has shied away from saying that for marketing purposes, for fear of the response “Yeah, right, everybody says that.” But when I talked with Mayank Bawa, Steve Wooledge, et al. yesterday, I focused discussions on just that point. Based on that chat and others before, here are some highlights (as I understand them) of what Aster claims, believes, or believes to be differentiated about its nCluster technology: Read more

June 9, 2009

Aster Data sticks by its SQL/MapReduce guns

Aster Data continues to think that MapReduce, integrated with SQL, is an important technology. For example:

I was a big fan of SQL/MapReduce when it was first announced last August. Notwithstanding persuasive examples favoring pure DBMS or pure MapReduce over DBMS/MapReduce integration, I continue to think the SQL/MapReduce idea has great potential.  But I do wish more successful production examples would become visible …

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.