Amazon and its cloud
Analysis of Amazon’s role in database and analytic technology, especially via the S3/EC2 cloud computing initiative. Also covered are SimpleDB and Amazon’s role as a technology user. Related subjects include:
Online booksellers and their “eventually correct” data
I’ve become involved in the world of online book publishing through Linda Barlow, who among other credentials:
- Has been a best-selling, award-winning novelist.
- Is superbly connected in the writing world. (Two terms as a director of the Author’s Guild, past president of Novelists, Inc., etc.)
- Taught college courses on both English and neurobiology.
- Was a top-two independent expert on search engines (her only peer was Danny Sullivan).
- Wrote better SQL than I did.
In other words, she’s no dummy. 🙂
I emphasize that because she’s my source about some screw-ups at Amazon.com and other online booksellers that at first seem a little hard to believe. In no particular order: Read more
Categories: Amazon and its cloud, Specific users | 4 Comments |
Things I keep needing to say
Some subjects just keep coming up. And so I keep saying things like:
Most generalizations about “Big Data” are false. “Big Data” is a horrific catch-all term, with many different meanings.
Most generalizations about Hadoop are false. Reasons include:
- Hadoop is a collection of disparate things, most particularly data storage and application execution systems.
- The transition from Hadoop 1 to Hadoop 2 will be drastic.
- For key aspects of Hadoop — especially file format and execution engine — there are or will be widely varied options.
Hadoop won’t soon replace relational data warehouses, if indeed it ever does. SQL-on-Hadoop is still very immature. And you can’t replace data warehouses unless you have the power of SQL.
Note: SQL isn’t the only way to provide “the power of SQL”, but alternative approaches are just as immature.
Most generalizations about NoSQL are false. Different NoSQL products are … different. It’s not even accurate to say that all NoSQL systems lack SQL interfaces. (For example, SQL-on-Hadoop often includes SQL-on-HBase.)
Notes and comments, July 2, 2013
I’m not having a productive week, part of the reason being a hard drive crash that took out early drafts of what were to be last weekend’s blog posts. Now I’m operating from a laptop, rather than my preferred dual-monitor set-up. So please pardon me if I’m concise even by comparison to my usual standards.
- My recent posts based on surveillance news have been partly superseded by – well, by more news. Some of that news, along with some good discussion, may be found in the comment threads.
- The same goes for my recent Hadoop posts.
- The replay for my recent webinar on real-time analytics is now available. My part ran <25 minutes.
- One of my numerous clients using or considering a “real-time analytics” positioning is Sqrrl, the company behind the NoSQL DBMS Accumulo. Last month, Derrick Harris reported on a remarkable Accumulo success story – multiple US intelligence instances managing 10s of petabytes each, and supporting a variety of analytic (I think mainly query/visualization) approaches.
- Several sources have told me that MemSQL’s Zynga sale is (in part) for Membase replacement. This is noteworthy because Zynga was the original pay-for-some-of-the-development Membase customer.
- More generally, the buzz out of Couchbase is distressing. Ex-employees berate the place; job-seekers check around and then decide not to go there; rivals tell me of resumes coming out in droves. Yes, there’s always some of that, even at obviously prospering companies, but this feels like more than the inevitable low-level buzz one hears anywhere.
- I think the predictive modeling state of the art has become:
- Cluster in some way.
- Model separately on each cluster.
- And if you still want to do something that looks like a regression – linear or otherwise – then you might want to use a tool that lets you shovel training data in WITHOUT a whole lot of preparation* and receive a model back out. Even if you don’t accept that as your final model, it can at least be a great guide to feature selection (in the statistical sense of the phrase) and the like.
- Champion/challenger model testing is also a good idea, at least if you’re in some kind of personalization/recommendation space, and have enough traffic to test like that.**
- Most companies have significant turnover after being acquired, perhaps after a “golden handcuff” period. Vertica is no longer an exception.
- Speaking of my clients at HP Vertica – they’ve done a questionable job of communicating that they’re willing to price their product quite reasonably. (But at least they allowed me to write about $2K/terabyte for hardware/software combined.)
- I’m hearing a little more Amazon Redshift buzz than I expected to. Just a little.
- StreamBase was bought by TIBCO. The rumor says $40 million.
*Basic and unavoidable ETL (Extract/Transform/Load) of course excepted.
**I could call that ABC (Always Be Comparing) or ABT (Always Be Testing), but they each sound like – well, like The Glove and the Lions.
Some stuff I’m working on
1. I have some posts up on Strategic Messaging. The most recent are overviews of messaging, pricing, and positioning.
2. Numerous vendors are blending SQL and JSON management in their short-request DBMS. It will take some more work for me to have a strong opinion about the merits/demerits of various alternatives.
The default implementation — one example would be Clustrix’s — is to stick the JSON into something like a BLOB/CLOB field (Binary/Character Large Object), index on individual values, and treat those indexes just like any others for the purpose of SQL statements. Drawbacks include:
- You have to store or retrieve the JSON in whole documents at a time.
- If you are spectacularly careless, you could write JOINs with odd results.
IBM DB2 is one recent arrival to the JSON party. Unfortunately, I forgot to ask whether IBM’s JSON implementation was based on IBM DB2 pureXML when I had the chance, and IBM hasn’t gotten around to answering my followup query.
3. Nor has IBM gotten around to answering my followup queries on the subject of BLU, an interesting-sounding columnar option for DB2.
4. Numerous clients have asked me whether they should be active in DBaaS (DataBase as a Service). After all, Amazon, Google, Microsoft, Rackspace and salesforce.com are all in that business in some form, and other big companies have dipped toes in as well. Read more
More on Actian/ParAccel/VectorWise/Versant/etc.
My quick reaction to the Actian/ParAccel deal was negative. A few challenges to my views then emerged. They didn’t really change my mind.
Amazon Redshift
Amazon did a deal with ParAccel that amounted to:
- Amazon got a very cheap license to a limited subset of ParAccel’s product …
- … so that it could launch a service called Amazon Redshift.
- Amazon also invested in ParAccel.
Some argue that this is great for ParAccel’s future prospects. I’m not convinced.
No doubt there are and will be Redshift users, evidently including Infor. But so far as I can tell, Redshift uses very standard SQL, so it doesn’t seed a ParAccel market in terms of developer habits. The administration/operation story is similar. So outside of general validation/bragging rights, Redshift is not a big deal for ParAccel.
OEMs and bragging rights
It’s not just Amazon and Infor; there’s also a MicroStrategy deal to OEM ParAccel — I think it’s the real ParAccel software in that case — for a particular service, MicroStrategy Wisdom. But unless I’m terribly mistaken, HP Vertica, Sybase IQ and even Infobright each have a lot more OEMs than ParAccel, just as they have a lot more customers than ParAccel overall.
This OEM success is a great validation for the idea of columnar analytic RDBMS in general, but I don’t see where it’s an advantage for ParAccel vs. the columnar leaders. Read more
Categories: Actian and Ingres, Amazon and its cloud, Columnar database management, HP and Neoview, Market share and customer counts, ParAccel, Sybase, VectorWise, Vertica Systems | 7 Comments |
Notes and links, February 17, 2013
1. It boggles my mind that some database technology companies still don’t view compression as a major issue. Compression directly affects storage and bandwidth usage alike — for all kinds of storage (potentially including RAM) and for all kinds of bandwidth (network, I/O, and potentially on-server).
Trading off less-than-maximal compression so as to minimize CPU impact can make sense. Having no compression at all, however, is an admission of defeat.
2. People tend to misjudge Hadoop’s development pace in either of two directions. An overly expansive view is to note that some people working on Hadoop are trying to make it be all things for all people, and to somehow imagine those goals will soon be achieved. An overly narrow view is to note an important missing feature in Hadoop, and think there’s a big business to be made out of offering it alone.
At this point, I’d guess that Cloudera and Hortonworks have 500ish employees combined, many of whom are engineers. That allows for a low double-digit number of 5+ person engineering teams, along with a number of smaller projects. The most urgently needed features are indeed being built. On the other hand, a complete monument to computing will not soon emerge.
3. Schooner’s acquisition by SanDisk has led to the discontinuation of Schooner’s SQL DBMS SchoonerSQL. Schooner’s flash-optimized key-value store Membrain continues. I don’t have details, but the Membrain web page suggests both data store and cache use cases.
4. There’s considerable personnel movement at Boston-area database technology companies right now. Please ping me directly if you care.
Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations
To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.
Gartner seems confused about Kognitio’s products and history alike.
- Gartner calls Kognitio an “in-memory” DBMS, which is not accurate.
- Gartner doesn’t remark on Kognitio’s worst-in-class* compression.
- Gartner gives Kognitio oddly high marks for a late, me-too Hadoop integration strategy.
- Gartner writes as if Kognitio’s next attempt at the US market will be the first one, which is not the case.
- Gartner says that Kognitio pioneered data warehouse SaaS (Software as a Service), which actually has existed since the pre-relational 1970s.
Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.
* non-existent
In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more
Amazon Redshift and its implications
Merv Adrian and Doug Henschen both reported more details about Amazon Redshift than I intend to; see also the comments on Doug’s article. I did talk with Rick Glick of ParAccel a bit about the project, and he noted:
- Amazon Redshift is missing parts of ParAccel, notably the extensibility framework.
- ParAccel did some engineering to make its DBMS run better in the cloud.
- Amazon did some engineering in the areas it knows better than ParAccel — cloud provisioning, cloud billing, and so on.
“We didn’t want to do the deal on those terms” comments from other companies suggest ParAccel’s main financial take from the deal is an already-reported venture investment.
The cloud-related engineering was mainly around communications, e.g. strengthening error detection/correction to make up for the lack of dedicated switches. In general, Rick seemed more positive on running in the (Amazon) cloud than analytic RDBMS vendors have been in the past.
So who should and will use Amazon Redshift? For starters, I’d say: Read more
ParAccel update
In connection with Amazon’s Redshift announcement, ParAccel reached out, and so I talked with them for the first time in a long while. At the highest level:
- ParAccel now has 60+ customers, up from 30+ two years ago and 40ish soon thereafter.
- ParAccel is now focusing its development and marketing on analytic platform capabilities more than raw database performance.
- ParAccel is focusing on working alongside other analytic data stores — relational or Hadoop — rather than supplanting them.
There wasn’t time for a lot of technical detail, but I gather that the bit about working alongside other data stores:
- Is relatively new.
- Works via SELECT statements that reach out to the other data stores.
- Is called “on-demand integration”.
- Is built in ParAccel’s extensibility/analytic platform framework.
- Uses HCatalog when reaching into Hadoop.
Also, it seems that ParAccel:
- Is in the early stages of writing its own analytic functions.
- Bundles Fuzzy Logix and actually has some users for that.
Categories: Amazon and its cloud, Cloud computing, Data warehousing, Hadoop, Market share and customer counts, ParAccel, Predictive modeling and advanced analytics, Specific users | 5 Comments |
Hadoop distributions: CDH 4, HDP 1, Hadoop 2.0, Hadoop 1.0 and all that
This is part of a four-post series, covering:
- Annoying Hadoop marketing themes that should be ignored.
- Hadoop versions and distributions, and their readiness or lack thereof for production (this post).
- In general, how “enterprise-ready” is Hadoop?
- HBase 0.92.
The posts depend on each other in various ways.
My clients at Cloudera and Hortonworks have somewhat different views as to the maturity of various pieces of Hadoop technology. In particular:
- Cloudera introduced CDH 4* and Hortonworks introduced HDP 1*, both timed for the recent Hadoop Summit.
- CDH 4 is based mainly on Hadoop 2.0, which Cloudera says it has tested extensively.
- HDP 1 is based on Hadoop 1.0, on the theory that nobody has properly tested Hadoop 2.0, which is still characterized as “alpha”.
- CDH 4 boasts sub-second NameNode failover.
- Hortonworks is partnering with third parties such as VMware to address the high-availability problems caused by failover potentially taking several minutes.
- Hadoop 2.0 and CDH 4 also incorporate improvements to NameNode scalability, HDFS (Hadoop Distributed File System) performance, HBase performance, and HBase functionality.
- As does CDH 4, HDP 1 includes HCatalog, an extension of Hive technology that serves as a more general metadata store. (Edit: Actually, see the comment thread below.)
- Hortonworks thinks HCatalog is a big deal in improving Hadoop data management and connectivity, and already has a Talend partnership based on HCatalog. Cloudera is less sure, especially in HCatalog’s current form.
- HDP 1 includes Ambari, an Apache open source competitor to Cloudera Manager (the closed-source part of Cloudera Enterprise). Hortonworks concedes a functionality gap between Ambari and Cloudera Manager, but perhaps a smaller one than Cloudera sees.
- Hortonworks thinks Ambari being open source means better integration with other management platforms. Cloudera touts the integration features and integrations of Cloudera Manager 4.
- Nobody seems confident that MapReduce 2 is ready for prime time. While it’s in CDH 4, so is MapReduce 1.
*”CDH” stands, due to some trademarking weirdness, for “Cloudera’s Distribution including Apache Hadoop”. “HDP” stands for “Hortonworks Data Platform”.