MongoDB
Discussion of MongoDB and its sponsoring company 10gen.
Some notes on new-era data management, March 31, 2013
Hmm. I probably should have broken this out as three posts rather than one after all. Sorry about that.
Performance confusion
Discussions of DBMS performance are always odd, for starters because:
- Workloads and use cases vary greatly.
- In particular, benchmarks such as the YCSB or TPC-H aren’t very helpful.
But in NoSQL/NewSQL short-request processing performance claims seem particularly confused. Reasons include but are not limited to:
- It’s common for databases or at least working sets to be entirely in RAM — but it’s not always required.
- Consistency and durability models vary. What’s more, in some systems — e.g. MongoDB — there’s considerable flexibility as to which model you use.
- In particular, there’s an increasingly common choice in which data is written synchronously to RAM on 2 or more servers, then asynchronously to disk on each of them. Performance in these cases can be quite different from when all writes need to be committed to disk. Of course, you need sufficient disk I/O to keep up, so SSDs (Solid-State Drives) can come in handy.
- Many workloads are inherently single node (replication aside). Others are not.
MongoDB and 10gen
I caught up with Ron Avnur at 10gen. Technical highlights included: Read more
Open source strategies
From time to time I advise a software vendor on how, whether, or to what extent it should offer its technology in open source. In summary, I believe:
- The formal differences between “open source” and “closed source” strategies are of secondary importance.
- The attitudinal and emotional differences between “open source” and “closed source” approaches can be large.
- A pure closed source strategy can make sense.
- A closed source strategy with important open source aspects can make sense.
- A pure open source strategy will only rarely win.
Here’s why.
An “open source software” business model and strategy might include:
- Software given away for free.
- Demand generation to encourage people to use the free version of the software.
- Subscription pricing for additional proprietary software and support.
- Direct sales, and further marketing, to encourage users of the free stuff to upgrade to a paid version.
A “closed source software” business model and strategy might include:
- Demand generation.
- Free-download versions of the software.
- Subscription pricing for software (increasingly common) and support (always).
- Direct sales, and associated marketing.
Those look pretty similar to me.
Of course, there can still be differences between open and closed source. In particular: Read more
Categories: Hadoop, Hortonworks, memcached, MongoDB, Open source | 8 Comments |
Couchbase 2.0
My clients at Couchbase checked in.
- After multiple delays, Couchbase 2.0 is well into beta, with general availability being delayed by the holiday season as much as anything else.
- Couchbase (the company) now has >350 subscription customers, almost all for Couchbase (the product) — which is to say for what was known as Membase, which is basically a persistent version of Memcached.
- There also are many users of open source Couchbase, most famously LinkedIn.
- Orbitz is a much-mentioned flagship paying Couchbase customer.
- Couchbase customers mainly seem to be replacing a caching layer, Memcached or otherwise.
- Couchbase headcount is just under 100.
The big changes in Couchbase 2.0 versus the previous (1.8.x) version are:
- JSON storage, including secondary indexes.
- Multi-data-center replication.
- A back-end change from SQLite to a heavily forked version of CouchDB, called Couchstore.
Couchbase 2.0 is upwards-compatible with prior versions of Couchbase (and hence with Memcached), but not with CouchDB.
Technology notes on Couchbase 2.0 include: Read more
Categories: Basho and Riak, Cache, Cassandra, Clustering, Couchbase, MapReduce, Market share and customer counts, MongoDB, NoSQL, Open source, Structured documents | 5 Comments |
Incremental MapReduce
My clients at Cloudant, Couchbase, and 10gen/MongoDB (Edit: See Alex Popescu’s comment below) all boast the feature incremental MapReduce. (And they’re not the only ones.) So I feel like making a quick post about it. For starters, I’ll quote myself about Cloudant:
The essence of Cloudant’s incremental MapReduce seems to be that data is selected only if it’s been updated since the last run. Obviously, this only works for MapReduce algorithms whose eventual output can be run on different subsets of the target data set, then aggregated in a simple way.
These implementations of incremental MapReduce are hacked together by teams vastly smaller than those working on Hadoop, and surely fall short of Hadoop in many areas such as performance, fault-tolerance, and language support. That’s a given. Still, if the jobs are short and simple, those deficiencies may be tolerable.
A StackOverflow thread about MongoDB’s version of incremental MapReduce highlights some of the implementation challenges.
But all practicality aside, let’s return to the point that incremental MapReduce only works for some kinds of MapReduce-based algorithms, and consider how much of a limitation that really is. Looking at the Map steps sheds a little light: Read more
Categories: Cloudant, Couchbase, EAI, EII, ETL, ELT, ETLT, Hadoop, MapReduce, MongoDB, RDF and graphs | 1 Comment |
Notes and comments — October 31, 2012
Time for another catch-all post. First and saddest — one of the earliest great commenters on this blog, and a beloved figure in the Boston-area database community, was Dan Weinreb, whom I had known since some Symbolics briefings in the early 1980s. He passed away recently, much much much too young. Looking back for a couple of examples — even if you’ve never heard of him before, I see that Dan ‘s 2009 comment on Tokutek is still interesting today, and so is a post on his own blog disagreeing with some of my choices in terminology.
Otherwise, in no particular order:
1. Chris Bird is learning MongoDB. As is common for Chris, his comments are both amusing and enlightening.
2. When I relayed Cloudera’s comments on Hadoop adoption, I left out a couple of categories. One Cloudera called “mobile”; when I probed, that was about HBase, with an example being messaging apps.
The other was “phone home” — i.e., the ingest of machine-generated data from a lot of different devices. This is something that’s obviously been coming for several years — but I’m increasingly getting the sense that it’s actually arrived.
Categories: Cloudera, Data integration and middleware, Hadoop, HBase, Informatica, Metamarkets and Druid, MongoDB, NoSQL, Open source, Telecommunications | 2 Comments |
Many kinds of memory-centric data management
I’m frequently asked to generalize in some way about in-memory or memory-centric data management. I can start:
- The desire for human real-time interactive response naturally leads to keeping data in RAM.
- Many databases will be ever cheaper to put into RAM over time, thanks to Moore’s Law. (Most) traditional databases will eventually wind up in RAM.
- However, there will be exceptions, mainly on the machine-generated side. Where data creation and RAM data storage are getting cheaper at similar rates … well, the overall cost of RAM storage may not significantly decline.
Getting more specific than that is hard, however, because:
- The possibilities for in-memory data storage are as numerous and varied as those for disk.
- The individual technologies and products for in-memory storage are much less mature than those for disk.
- Solid-state options such as flash just confuse things further.
Consider, for example, some of the in-memory data management ideas kicking around. Read more
Our clients, and where they are located
From time to time, I disclose our vendor client lists. Another iteration is below, the first since a little over a year ago. To be clear:
- This is a list of Monash Advantage members.
- All our vendor clients are Monash Advantage members, unless …
- … we work with them primarily in their capacity as technology users. (A large fraction of our user clients happen to be SaaS vendors.)
- We do not usually disclose our user clients.
- We do not usually disclose our venture capital clients, nor those who invest in publicly-traded securities.
- Excluded from this round of disclosure is one vendor I have never written about.
- Included in this round of disclosure is one client paying for services partly in stock. All our other clients are cash-only.
For reasons explained below, I’ll group the clients geographically. Obviously, companies often have multiple locations, but this is approximately how it works from the standpoint of their interactions with me. Read more
Couchbase update
I checked in with James Phillips for a Couchbase update, and I understand better what’s going on. In particular:
- Give or take minor tweaks, what I wrote in my August, 2010 Couchbase updates still applies.
- Couchbase now and for the foreseeable future has one product line, called Couchbase.
- Couchbase 2.0, the first version of Couchbase (the product) to use CouchDB for persistence, has slipped …
- … because more parts of CouchDB had to be rewritten for performance than Couchbase (the company) had hoped.
- Think mid-year or so for the release of Couchbase 2.0, hopefully sooner.
- In connection with the need to rewrite parts of CouchDB, Couchbase has:
- Gotten out of the single-server CouchDB business.
- Donated its proprietary single-sever CouchDB intellectual property to the Apache Foundation.
- The 150ish new customers in 2011 Couchbase brags about are real, subscription customers.
- Couchbase has 60ish people, headed to >100 over the next few months.
Categories: Basho and Riak, Cassandra, Couchbase, CouchDB, DataStax, Market share and customer counts, MongoDB, NoSQL, Open source, Parallelization, Web analytics, Zynga | 7 Comments |
NoSQL notes
Last week I visited with James Phillips of Couchbase, Max Schireson and Eliot Horowitz of 10gen, and Todd Lipcon, Eric Sammer, and Omer Trajman of Cloudera. I guess it’s time for a round-up NoSQL post. 🙂
Views of the NoSQL market horse race are reasonably consistent, with perhaps some elements of “Where you stand depends upon where you sit.”
- As James tells it, NoSQL is simply a three-horse race between Couchbase, MongoDB, and Cassandra.
- Max would include HBase on the list.
- Further, Max pointed out that metrics such as job listings suggest MongoDB has the most development activity, and Couchbase/Membase/CouchDB perhaps have less.
- The Cloudera guys remarked on some serious HBase adopters.*
- Everybody I spoke with agreed that Riak had little current market presence, although some Basho guys could surely be found who’d disagree.
Categories: Basho and Riak, Cassandra, Cloudera, Clustering, Couchbase, HBase, Market share and customer counts, MongoDB, NoSQL, Open source, Oracle, Parallelization | 12 Comments |
MongoDB users and use cases
I spoke with Eliot Horowitz and Max Schierson of 10gen last month about MongoDB users and use cases. The biggest clusters they came up with weren’t much over 100 nodes, but clusters an order of magnitude bigger were under development. The 100 node one we talked the most about had 33 replica sets, each with about 100 gigabytes of data, so that’s in the 3-4 terabyte range total. In general, the largest MongoDB databases are 20-30 TB; I’d guess those really do use the bulk of available disk space. Read more