Comments on the 2013 Gartner Magic Quadrant for Operational Database Management Systems
The 2013 Gartner Magic Quadrant for Operational Database Management Systems is out. “Operational” seems to be Gartner’s term for what I call short-request, in each case the point being that OLTP (OnLine Transaction Processing) is a dubious term when systems omit strict consistency, and when even strictly consistent systems may lack full transactional semantics. As is usually the case with Gartner Magic Quadrants:
- I admire the raw research.
- The opinions contained are generally reasonable (especially since Merv Adrian joined the Gartner team).
- Some of the details are questionable.
- There’s generally an excessive focus on Gartner’s perception of vendors’ business skills, and on vendors’ willingness to parrot all the buzzphrases Gartner wants to hear.
- The trends Gartner highlights are similar to those I see, although our emphasis may be different, and they may leave some important ones out. (Big omission — support for lightweight analytics integrated into operational applications, one of the more genuine forms of real-time analytics.)
Anyhow: Read more
Glassbeam instantiates a lot of trends
Glassbeam checked in recently, and they turn out to exemplify quite a few of the themes I’ve been writing about. For starters:
- Glassbeam has an analytic technology stack focused on poly-structured machine-generated data.
- Glassbeam partially organizes that data into event series …
- … in a schema that is modified as needed.
Glassbeam basics include:
- Founded in 2009.
- Based in Santa Clara. Back-end engineering in Bangalore.
- $6 million in angel money; no other VC.
- High single-digit customer count, …
- … plus another high single-digit number of end customers for an OEM offering a limited version of their product.
All Glassbeam customers except one are SaaS/cloud (Software as a Service), and even that one was only offered a subscription (as oppose to perpetual license) price.
So what does Glassbeam’s technology do? Glassbeam says it is focused on “machine data analytics,” specifically for the “Internet of Things”, which it distinguishes from IT logs.* Specifically, Glassbeam sells to manufacturers of complex devices — IT (most of its sales so far ), medical, automotive (aspirational to date), etc. — and helps them analyze “phone home” data, for both support/customer service and marketing kinds of use cases. As of a recent release, the Glassbeam stack can: Read more
Hortonworks business notes
Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes from my call — for which Rob Bearden didn’t bother showing up — include, in no particular order:
- Hortonworks denies advanced acquisition discussions with either Microsoft and Intel. Of course, that doesn’t exactly contradict the widespread story of Intel having made an acquisition offer. Edit: I have subsequently heard, very credibly, that the denial was untrue.
- As vendors usually do, Hortonworks denies the extreme forms of Cloudera’s suggestion that Hortonworks competitive wins relate to price slashing. But Hortonworks does believe that its license fees often wind up being lower than Cloudera’s, due especially to Hortonworks offering few extra-charge items than Cloudera.
- Hortonworks used a figure of ~75 subscription customers. Edit: That figure turns out in retrospect to have been inflated. This does not include OEM sales through, for example, Teradata, Microsoft Azure, or Rackspace. However, that does include …
- … a small number of installations hosted in the cloud — e.g. ~2 on Amazon Web Services — or otherwise remotely. Also, testing in the cloud seems to be fairly frequent, and the cloud can also be a source of data ingested into Hadoop.
- Since Hortonworks a couple of times made it seem that Rackspace was an important partner, behind only Teradata and Microsoft, I finally asked why. Answers boiled down to a Rackspace Hadoop-as-a-service offering, plus joint work to improve Hadoop-on-OpenStack.
- Other Hortonworks reseller partners seem more important in terms of helping customers consume HDP (Hortonworks Data Platform), rather than for actually doing Hortonworks’ selling for it. (This is unsurprising — channel sales rarely are a path to success for a product that is also appropriately sold by a direct force.)
- Hortonworks listed its major industry sectors as:
- Web and retailing, which it identifies as one thing.
- Media.
- Telecommunications.
- Health care (various subsectors).
- Financial services, which it called “competitive” in the kind of tone that usually signifies “we lose a lot more than we win, and would love to change that”.
In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social. Read more
Aerospike 3
My clients at Aerospike are coming out with their Version 3, and as several of my clients do, have encouraged me to front-run what otherwise would be the Monday embargo.
I encourage such behavior with arguments including:
- “Nobody else is going to write in such technical detail anyway, so they won’t mind.”
- “I’ve done this before. Other writers haven’t complained.”
- “In fact, some other writers like having me go first, so that they can learn from and/or point to what I say.”
- “Hey, I don’t ask for much in the way of exclusives, but I’d be pleased if you threw me this bone.”
Aerospike 2’s value proposition, let us recall, was:
… performance, consistent performance, and uninterrupted operations …
- Aerospike’s consistent performance claims are along the lines of sub-millisecond latency, with 99.9% of responses being within 5 milliseconds, and even a node outage only borking performance for some 10s of milliseconds.
- Uninterrupted operation is a core Aerospike design goal, and the company says that to date, no Aerospike production cluster has ever gone down.
The major support for such claims is Aerospike’s success in selling to the digital advertising market, which is probably second only to high-frequency trading in its low-latency demands. For example, Aerospike’s CMO Monica Pal sent along a link to what apparently is:
- a video by a customer named Brightroll …
- … who enjoy SLAs (Service Level Agreements) such as those cited above (they actually mentioned five 9s)* …
- … at peak loads of 10-12 million requests/minute.
Categories: Aerospike, Market share and customer counts, Memory-centric data management, NoSQL, Pricing, Web analytics | 3 Comments |
Things I keep needing to say
Some subjects just keep coming up. And so I keep saying things like:
Most generalizations about “Big Data” are false. “Big Data” is a horrific catch-all term, with many different meanings.
Most generalizations about Hadoop are false. Reasons include:
- Hadoop is a collection of disparate things, most particularly data storage and application execution systems.
- The transition from Hadoop 1 to Hadoop 2 will be drastic.
- For key aspects of Hadoop — especially file format and execution engine — there are or will be widely varied options.
Hadoop won’t soon replace relational data warehouses, if indeed it ever does. SQL-on-Hadoop is still very immature. And you can’t replace data warehouses unless you have the power of SQL.
Note: SQL isn’t the only way to provide “the power of SQL”, but alternative approaches are just as immature.
Most generalizations about NoSQL are false. Different NoSQL products are … different. It’s not even accurate to say that all NoSQL systems lack SQL interfaces. (For example, SQL-on-Hadoop often includes SQL-on-HBase.)
Notes and comments, July 2, 2013
I’m not having a productive week, part of the reason being a hard drive crash that took out early drafts of what were to be last weekend’s blog posts. Now I’m operating from a laptop, rather than my preferred dual-monitor set-up. So please pardon me if I’m concise even by comparison to my usual standards.
- My recent posts based on surveillance news have been partly superseded by – well, by more news. Some of that news, along with some good discussion, may be found in the comment threads.
- The same goes for my recent Hadoop posts.
- The replay for my recent webinar on real-time analytics is now available. My part ran <25 minutes.
- One of my numerous clients using or considering a “real-time analytics” positioning is Sqrrl, the company behind the NoSQL DBMS Accumulo. Last month, Derrick Harris reported on a remarkable Accumulo success story – multiple US intelligence instances managing 10s of petabytes each, and supporting a variety of analytic (I think mainly query/visualization) approaches.
- Several sources have told me that MemSQL’s Zynga sale is (in part) for Membase replacement. This is noteworthy because Zynga was the original pay-for-some-of-the-development Membase customer.
- More generally, the buzz out of Couchbase is distressing. Ex-employees berate the place; job-seekers check around and then decide not to go there; rivals tell me of resumes coming out in droves. Yes, there’s always some of that, even at obviously prospering companies, but this feels like more than the inevitable low-level buzz one hears anywhere.
- I think the predictive modeling state of the art has become:
- Cluster in some way.
- Model separately on each cluster.
- And if you still want to do something that looks like a regression – linear or otherwise – then you might want to use a tool that lets you shovel training data in WITHOUT a whole lot of preparation* and receive a model back out. Even if you don’t accept that as your final model, it can at least be a great guide to feature selection (in the statistical sense of the phrase) and the like.
- Champion/challenger model testing is also a good idea, at least if you’re in some kind of personalization/recommendation space, and have enough traffic to test like that.**
- Most companies have significant turnover after being acquired, perhaps after a “golden handcuff” period. Vertica is no longer an exception.
- Speaking of my clients at HP Vertica – they’ve done a questionable job of communicating that they’re willing to price their product quite reasonably. (But at least they allowed me to write about $2K/terabyte for hardware/software combined.)
- I’m hearing a little more Amazon Redshift buzz than I expected to. Just a little.
- StreamBase was bought by TIBCO. The rumor says $40 million.
*Basic and unavoidable ETL (Extract/Transform/Load) of course excepted.
**I could call that ABC (Always Be Comparing) or ABT (Always Be Testing), but they each sound like – well, like The Glove and the Lions.
Where things stand in US government surveillance
Edit: Please see the comment thread below for updates. Please also see a follow-on post about how the surveillance data is actually used.
US government surveillance has exploded into public consciousness since last Thursday. With one major exception, the news has just confirmed what was already thought or known. So where do we stand?
My views about domestic data collection start:
- I’ve long believed that the Feds — specifically the NSA (National Security Agency) — are storing metadata/traffic data on every telephone call and email in the US. The recent news, for example Senator Feinstein’s responses to the Verizon disclosure, just confirms it. That the Feds sometimes claim this has to be “foreign” data or they won’t look at it hardly undermines my opinion.
- Even private enterprises can more or less straightforwardly buy information about every credit card purchase we make. So of course the Feds can get that as well, as the Wall Street Journal seems to have noticed. More generally, I’d assume the Feds have all the financial data they want, via the IRS if nothing else.
- Similarly, many kinds of social media postings are aggregated for anybody to purchase, or can be scraped by anybody who invests in the equipment and bandwidth. Attensity’s service is just one example.
- I’m guessing that web use data (http requests, search terms, etc.) is not yet routinely harvested by the US government.* Ditto deanonymization of same. I guess that way basically because I’ve heard few rumblings to the contrary. Further, the consumer psychographic profiles that are so valuable to online retailers might be of little help to national security analysts anyway.
- Video surveillance seems likely to grow, from fixed cameras perhaps to drones; note for example the various officials who called for more public cameras after that Boston Marathon bombing. But for the present discussion, that’s of lesser concern to me, simply because it’s done less secretively than other kinds of surveillance. If there’s a camera that can see us, often we can see it too.
*Recall that these comments are US-specific. Data retention legislation has been proposed or passed in multiple countries to require recording of, among other things, all URL requests, with the stated goal of fighting either digital piracy or child pornography.
As for foreign data: Read more
Categories: Hadoop, HP and Neoview, Petabyte-scale data management, Pricing, Surveillance and privacy, Telecommunications, Text, Vertica Systems, Web analytics | 10 Comments |
Notes on Teradata systems
Teradata is announcing its new high-end systems, the Teradata 6700 series. Notes on that include:
- Teradata tends to get 35-55% (roughly speaking) annual performance improvements, as measured by its internal blended measure Tperf. A big part of this is exploiting new-generation Intel processors.
- This year the figure is around 40%.
- The 6700 is based on Intel’s Sandy Bridge.
- Teradata previously told me that Ivy Bridge — the next one after Sandy Bridge — could offer a performance “discontinuity”. So, while this is just a guess, I expect that next year’s Teradata performance improvement will beat this year’s.
- Teradata has now largely switched over to InfiniBand.
Teradata is also talking about data integration and best-of-breed systems, with buzzwords such as:
- Teradata Unified Data Architecture.
- Fabric-based computing, even though this isn’t really about storage.
- Teradata SQL-H.
Categories: Data integration and middleware, Data warehouse appliances, Data warehousing, Pricing, SAS Institute, Teradata | 3 Comments |
Key questions when selecting an analytic RDBMS
I recently complained that the Gartner Magic Quadrant for Data Warehouse DBMS conflates many use cases into one set of rankings. So perhaps now would be a good time to offer some thoughts on how to tell use cases apart. Assuming you know that you really want to manage your analytic database with a relational DBMS, the first questions you ask yourself could be:
- How big is your database? How big is your budget?
- How do you feel about appliances?
- How do you feel about the cloud?
- What are the size and shape of your workload?
- How fresh does the data need to be?
Let’s drill down. Read more
Some trends that will continue in 2013
I’m usually annoyed by lists of year-end predictions. Still, a reporter asked me for some, and I found one kind I was comfortable making.
Trends that I think will continue in 2013 include:
Growing attention to machine-generated data. Human-generated data grows at the rate business activity does, plus 0-25%. Machine-generated data grows at the rate of Moore’s Law, also plus 0-25%, which is a much higher total. In particular, the use of remote machine-generated data is becoming increasingly real.
Hadoop adoption. Everybody has the big bit bucket use case, largely because of machine-generated data. Even today’s technology is plenty good enough for that purpose, and hence justifies initial Hadoop adoption. Development of further Hadoop technology, which I post about frequently, is rapid. And so the Hadoop trend is very real.
Application SaaS. The on-premises application software industry has hopeless problems with product complexity and rigidity. Any suite new enough to cut the Gordian Knot is or will be SaaS (Software as a Service).
Newer BI interfaces. Advanced visualization — e.g. Tableau or QlikView — and mobile BI are both hot. So, more speculatively, are “social” BI (Business Intelligence) interfaces.
Price discounts. If you buy software at 50% of list price, you’re probably doing it wrong. Even 25% can be too high.
MySQL alternatives. NoSQL and NewSQL products often are developed as MySQL alternatives. Oracle has actually done a good job on MySQL technology, but now its business practices are scaring companies away from MySQL commitments, and newer short-request SQL DBMS are ready for use.