Parallelization

Analysis of issues in parallel computing, especially parallelized database management. Related subjects include:

June 16, 2012

Metamarkets Druid overview

This is part of a three-post series:

My clients at Metamarkets are planning to open source part of their technology, called Druid, which is described in the Druid section of Metamarkets’ blog. The timing of when this will happen is a bit unclear; I know the target date under NDA, but it’s not set in stone. But if you care, you can probably contact the company to get involved earlier than the official unveiling.

I imagine that open-source Druid will be pretty bare-bones in its early days. Code was first checked in early in 2011, and Druid seems to have averaged around 1 full-time developer since then. What’s more, it’s not obvious that all the features I’m citing here will be open-sourced; indeed, some of the ones I’m describing probably won’t be.

In essence, Druid is a distributed analytic DBMS. Druid’s design choices are best understood when you recall that it was invented to support Metamarkets’ large-scale, RAM-speed, internet marketing/personalization SaaS (Software as a Service) offering. In particular:

Interestingly, the single-table/multi-valued choice is echoed at WibiData, which deals with similar data sets. However, WibiData’s use cases are different from Metamarkets’, and in most respects the WibiData architecture is quite different from that of Metamarkets/Druid.

Read more

June 14, 2012

Workday update

In August 2010, I wrote about Workday’s interesting technical architecture, highlights of which included:

I caught up with Workday recently, and things have naturally evolved. Most of what we talked about (by my choice) dealt with data management, business intelligence, and the overlap between the two.

It is now reasonable to say that Workday’s servers fall into at least seven tiers, although we talked mainly about five that work together as a kind of giant app/database server amalgamation. The three that do noteworthy data management can be described as:

Two other Workday server tiers may be described as: Read more

June 3, 2012

Introduction to Cloudant

Cloudant is one of the few NoSQL companies with >100 paying subscription customers. For starters:

Company demographics include:

The Cloudant guys gave me some customer counts in May that weren’t much higher than those they gave me in February, and seem to have forgotten to correct the discrepancy. Oh well. The latter (probably understated) figures included ~160 paying customers, of which:

The largest Cloudant deployments seem to be in the 10s of terabytes, across a very low double digit number of servers.

Read more

May 13, 2012

Notes on the analysis of large graphs

This post is part of a series on managing and analyzing graph data. Posts to date include:

My series on graph data management and analytics got knocked off-stride by our website difficulties. Still, I want to return to one interesting set of issues — analyzing large graphs, specifically ones that don’t fit comfortably into RAM on a single server. By no means do I have the subject figured out. But here are a few notes on the matter.

How big can a graph be? That of course depends on:

*Even if your graph has 10 billion nodes, those can be tokenized in 34 bits, so the main concern is edges. Edges can include weights, timestamps, and so on, but how many specifics do you really need? At some point you can surely rely on a pointer to full detail stored elsewhere.

The biggest graph-size estimates I’ve gotten are from my clients at Yarcdata, a division of Cray. (“Yarc” is “Cray” spelled backwards.) To my surprise, they suggested that graphs about people could have 1000s of edges per node, whether in:

Yarcdata further suggested that bioinformatics use cases could have node counts higher yet, characterizing Bio2RDF as one of the “smaller” ones at 22 billion nodes. In these cases, the nodes/edge average seems lower than in people-analysis graphs, but we’re still talking about 100s of billions of edges.

Recalling that relationship analytics boils down to finding paths and subgraphs, the naive relational approach to such tasks would be: Read more

April 24, 2012

Notes on the Hadoop and HBase markets

I visited my clients at Cloudera and Hortonworks last week, along with scads of other companies. A few of the takeaways were:

March 27, 2012

DataStax Enterprise and Cassandra revisited

My last post about DataStax Enterprise and Cassandra didn’t go so well. As follow-up, I chatted for two hours with Rick Branson and Billy Bosworth of DataStax. Hopefully I can do better this time around.

For starters, let me say there are three kinds of data management nodes in DataStax Enterprise:

Cassandra, Solr, Lucene, and Hadoop are all Apache projects.

If we look at this from the standpoint of DML (Data Manipulation Language) and data access APIs:

In addition, it is sometimes recommended that you use “in-entity caching”, where an entire data structure (e.g. in JSON) winds up in a single Cassandra column.

The two main ways to get direct SQL* access to data in DataStax Enterprise are:

*or very SQL-like, depending on how you view things

Before going further, let’s recall some Cassandra basics: Read more

March 26, 2012

CodeFutures/dbShards update

I’ve been talking a fair bit with Cory Isaacson, CEO of my client CodeFutures, which makes dbShards. Business notes include:

Apparently, the figure of 6 dbShards customers in July, 2010 is more comparable to today’s 20ish contracts than to today’s 7-8 production users. About 4 of the original 6 are in production now.

NDA stuff aside, the main technical subject we talked about is something Cory calls “relational sharding”. The point is that dbShards’ transparent sharding can be done in such a way as to make many joins be single-server. Specifically:

dbShards can’t do cross-shard joins, but it can do distributed transactions comprising multiple updates. Cory argues persuasively that in almost all cases this is enough; but I see cross-shard joins as a feature that should someday be added to dbShards even so.

The real issue with dbShards’ transparent sharding is ensuring it’s really transparent. Cory regards as typical a customer with a couple thousand tables, who had to change a dozen or so SQL statements to implement dbShards. But there are near-term plans to automate the number of SQL changes needed down to 0. The essence of that change is this: Read more

March 21, 2012

DataStax Enterprise 2.0

Edit: Multiple errors in the post below have been corrected in a follow-on post about DataStax Enterprise and Cassandra.

My client DataStax is announcing DataStax Enterprise 2.0. The big point of the release is that there’s a bunch of stuff integrated together, including at least:

DataStax stresses that all this runs on the same cluster, with the same administrative tools and so on. For example, on a single cluster:

Read more

March 12, 2012

Kinds of data integration and movement

“Data integration” can mean many different things, to an extent that’s impeding me from writing about the area. So I’ll start by simply laying out some of the myriad ways that data can be brought to where it is needed, and worry about other subjects later. Yes, this is a massive wall of text, and incomplete even so — but that in itself is my central point.

There are two main paradigms for data integration:

Data movement and replication typically take one of three forms:

Beyond the core functions of movement, replication, and/or federation, there are other concerns closely connected to data integration. These include:

In particular, the following are largely different from each other. Read more

February 15, 2012

Quick notes on MySQL Cluster

According to the MySQL Cluster home page, today’s MySQL Cluster release has — give or take terminology details 🙂 —  added transparent sharding (Edit: Actually, please see the first comment below) and a memcached interface. My quick comments on all this to a reporter a couple of days ago were:

I don’t really know enough about MySQL Cluster right now to comment in more detail.

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.