MapReduce

Analysis of implementations of and issues associated with the parallel programming framework MapReduce. Related subjects include:

January 10, 2012

Notes on the Oracle Big Data Appliance

Oracle announced its Big Data Appliance. Specs may be found in the Oracle Big Data Appliance press release. Beyond that:

Read more

January 10, 2012

A couple of links explaining Cloudera Manager

Predictably, I wasn’t pre-briefed on the details of Oracle’s Big Data Appliance announcement today, and an inquiry to partner Cloudera doesn’t happen to have been immediately answered.* But anyhow, it’s clear from coverage by Larry Dignan and Derrick Harris that Oracle’s Big Data Appliance includes:

In other words, it’s a lot like getting Cloudera Enterprise,* plus some hardware, plus some other stuff.

*Edit: About 2 minutes after I posted this, I got email from Cloudera CEO Mike Olson. Yes, the Oracle Big Data Appliance bundles Cloudera Enterprise.

That raises an anyway recurring question: What exactly is Cloudera Manager? Read more

November 8, 2011

Hadapt is moving forward

I’ve talked with my clients at Hadapt a couple of times recently. News highlights include:

The Hadapt product story hasn’t changed significantly from what it was before. Specific points I can add include:   Read more

November 3, 2011

MarkLogic’s Hadoop connector

It’s time to circle back to a subject I skipped when I otherwise wrote about MarkLogic 5: MarkLogic’s new Hadoop connector.

Most of what’s confusing about the MarkLogic Hadoop Connector lies in two pairs of options it presents you:

Otherwise, the whole thing is just what you would think:

MarkLogic said that it wrote this Hadoop connector itself.

Read more

October 11, 2011

IBM is buying parallelization expert Platform Computing

IBM is acquiring Platform Computing, a company with which I had one briefing, last August. Quick background includes:  Read more

October 4, 2011

Cloudera versus Hortonworks

A few weeks ago I wrote:

The other big part of Hortonworks’ story is the claim that it holds the axe in Apache Hadoop development.

and

… just how dominant Hortonworks really is in core Hadoop development is a bit unclear. Meanwhile, Cloudera people seem to be leading a number of Hadoop companion or sub-projects, including the first two I can think of that relate to Hadoop integration or connectivity, namely Sqoop and Flume. So I’m not persuaded that the “we know this stuff better” part of the Hortonworks partnering story really holds up.

Now Mike Olson — CEO of my client Cloudera — has posted his analysis of the matter, in response to an earlier Hortonworks post asserting its claims. In essence, Mike argues:

Read more

September 23, 2011

Some notes on Hadoop (mainly) and appliances

1. EMC Greenplum has evolved its appliance product line. As I read that, the latest announcement boils down to saying that you can neatly network together various Greenplum appliances in quarter-rack increments. If you take a quarter rack each of four different things, then Greenplum says “Hooray! Our appliance is all-in-one!” Big whoop.

2. That said, the Hadoop part of EMC ‘s story is based on MapR, which so far as I can tell is actually a pretty good Hadoop implementation. More precisely, MapR makes strong claims about performance and so on, and Apache Hadoop folks don’t reply “MapR is full of &#$!” Rather, they say “We’re going to close the gap with MapR a lot faster than the MapR folks like to think — and by the way, guys, thanks for the butt-kick.” A lot more precision about MapR may be found in this M. C. Srivas SlideShare.

3. On its latest earnings call, Oracle clearly said it would introduce a Hadoop appliance, versus just hinting at a Hadoop appliance the prior quarter. The money quote was:  Read more

September 12, 2011

Hadoop notes

I visited California recently, and chatted with numerous companies involved in Hadoop — Cloudera, Hortonworks, MapR, DataStax, Datameer, and more. I’ll defer further Hadoop technical discussions for now — my target to restart them is later this month — but that still leaves some other issues to discuss, namely adoption and partnering.

The total number of enterprises in the world paying subscription and license fees that they would regard as being for “Hadoop or something Hadoop-related” probably is not much over 100 right now, but I’d expect to see pretty rapid growth. Beyond that, let’s divide customers into three groups:

Hadoop vendors, in different mixes, claim to be doing well in all three segments. Even so, almost all use cases involve some kind of machine-generated data, with one exception being a credit card vendor crunching a large database of transaction details. Multiple kinds of machine-generated data come into play — web/network/mobile device logs, financial trade data, scientific/experimental data, and more. In particular, pharmaceutical research got some mentions, which makes sense, in that it’s one area of scientific research that actually enjoys fat for-profit research budgets.

Read more

August 21, 2011

Hadoop evolution

I wanted to learn more about Hadoop and its futures, so I talked Friday with Arun Murthy of Hortonworks.* Most of what we talked about was:

Arun previously addressed these issues and more in a June slide deck.
Read more

July 27, 2011

Introduction to Zettaset

Zettaset is confusing, but as best I understand:

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.