Memory-centric data management
Analysis of technologies that manage data entirely or primarily in random-access memory (RAM). Related subjects include:
- Oracle TimesTen
- solidDB
- QlikTech
- SAP‘s BI Accelerator
- Exasol
- Solid-state memory as a replacement for disk
Kafka and more
In a companion introduction to Kafka post, I observed that Kafka at its core is remarkably simple. Confluent offers a marchitecture diagram that illustrates what else is on offer, about which I’ll note:
- The red boxes — “Ops Dashboard” and “Data Flow Audit” — are the initial closed-source part. No surprise that they sound like management tools; that’s the traditional place for closed source add-ons to start.
- “Schema Management”
- Is used to define fields and so on.
- Is not equivalent to what is ordinarily meant by schema validation, in that …
- … it allows schemas to change, but puts constraints on which changes are allowed.
- Is done in plug-ins that live with the producer or consumer of data.
- Is based on the Hadoop-oriented file format Avro.
Kafka offers little in the way of analytic data transformation and the like. Hence, it’s commonly used with companion products. Read more
Kafka and Confluent
For starters:
- Kafka has gotten considerable attention and adoption in streaming.
- Kafka is open source, out of LinkedIn.
- Folks who built it there, led by Jay Kreps, now have a company called Confluent.
- Confluent seems to be pursuing a fairly standard open source business model around Kafka.
- Confluent seems to be in the low to mid teens in paying customers.
- Confluent believes 1000s of Kafka clusters are in production.
- Confluent reports 40 employees and $31 million raised.
At its core Kafka is very simple:
- Kafka accepts streams of data in substantially any format, and then streams the data back out, potentially in a highly parallel way.
- Any producer or consumer of data can connect to Kafka, via what can reasonably be called a publish/subscribe model.
- Kafka handles various issues of scaling, load balancing, fault tolerance and so on.
So it seems fair to say:
- Kafka offers the benefits of hub vs. point-to-point connectivity.
- Kafka acts like a kind of switch, in the telecom sense. (However, this is probably not a very useful metaphor in practice.)
Readings in Database Systems
Mike Stonebraker and Larry Ellison have numerous things in common. If nothing else:
- They’re both titanic figures in the database industry.
- They both gave me testimonials on the home page of my business website.
- They both have been known to use the present tense when the future tense would be more accurate. 🙂
I mention the latter because there’s a new edition of Readings in Database Systems, aka the Red Book, available online, courtesy of Mike, Joe Hellerstein and Peter Bailis. Besides the recommended-reading academic papers themselves, there are 12 survey articles by the editors, and an occasional response where, for example, editors disagree. Whether or not one chooses to tackle the papers themselves — and I in fact have not dived into them — the commentary is of great interest.
But I would not take every word as the gospel truth, especially when academics describe what they see as commercial market realities. In particular, as per my quip in the first paragraph, the data warehouse market has not yet gone to the extremes that Mike suggests,* if indeed it ever will. And while Joe is close to correct when he says that the company Essbase was acquired by Oracle, what actually happened is that Arbor Software, which made Essbase, merged with Hyperion Software, and the latter was eventually indeed bought by the giant of Redwood Shores.**
*When it comes to data warehouse market assessment, Mike seems to often be ahead of the trend.
**Let me interrupt my tweaking of very smart people to confess that my own commentary on the Oracle/Hyperion deal was not, in retrospect, especially prescient.
Mike pretty much opened the discussion with a blistering attack against hierarchical data models such as JSON or XML. To a first approximation, his views might be summarized as: Read more
Couchbase 4.0 and related subjects
I last wrote about Couchbase in November, 2012, around the time of Couchbase 2.0. One of the many new features I mentioned then was secondary indexing. Ravi Mayuram just checked in to tell me about Couchbase 4.0. One of the important new features he mentioned was what I think he said was Couchbase’s “first version” of secondary indexing. Obviously, I’m confused.
Now that you’re duly warned, let me remind you of aspects of Couchbase timeline.
- 2 corporate name changes ago, Couchbase was organized to commercialize memcached. memcached, of course, was internet companies’ default way to scale out short-request processing before the rise of NoSQL, typically backed by manually sharded MySQL.
- Couchbase’s original value proposition, under the name Membase, was to provide persistence and of course support for memcached. This later grew into a caching-oriented pitch even to customers who weren’t already memcached users.
- A merger with the makers of CouchDB ensued, with the intention of replacing Membase’s SQLite back end with CouchDB at the same time as JSON support was introduced. This went badly.
- By now, however, Couchbase sells for more than distributed cache use cases. Ravi rattled off a variety of big-name customer examples for system-of-record kinds of use cases, especially in session logging (duh) and also in travel reservations.
- Couchbase 4.0 has been in beta for a few months.
Technical notes on Couchbase 4.0 — and related riffs 🙂 — start: Read more
Multi-model database managers
I’d say:
- Multi-model database management has been around for decades. Marketers who say otherwise are being ridiculous.
- Thus, “multi-model”-centric marketing is the last refuge of the incompetent. Vendors who say “We have a great DBMS, and by the way it’s multi-model (now/too)” are being smart. Vendors who say “You need a multi-model DBMS, and that’s the reason you should buy from us” are being pathetic.
- Multi-logical-model data management and multi-latency-assumption data management are greatly intertwined.
Before supporting my claims directly, let me note that this is one of those posts that grew out of a Twitter conversation. The first round went:
Merv Adrian: 2 kinds of multimodel from DBMS vendors: multi-model DBMSs and multimodel portfolios. The latter create more complexity, not less.
Me: “Owned by the same vendor” does not imply “well integrated”. Indeed, not a single example is coming to mind.
Merv: We are clearly in violent agreement on that one.
Around the same time I suggested that Intersystems Cache’ was the last significant object-oriented DBMS, only to get the pushback that they were “multi-model” as well. That led to some reasonable-sounding justification — although the buzzwords of course aren’t from me — namely: Read more
Categories: Data models and architecture, Database diversity, Databricks, Spark and BDAS, Intersystems and Cache', MOLAP, Object, Streaming and complex event processing (CEP) | 3 Comments |
Data messes
A lot of what I hear and talk about boils down to “data is a mess”. Below is a very partial list of examples.
To a first approximation, one would expect operational data to be rather clean. After all, it drives and/or records business transactions. So if something goes awry, the result can be lost money, disappointed customers, or worse, and those are outcomes to be strenuously avoided. Up to a point, that’s indeed true, at least at businesses large enough to be properly automated. (Unlike, for example — 🙂 — mine.)
Even so, operational data has some canonical problems. First, it could be inaccurate; somebody can just misspell or otherwise botch an entry. Further, there are multiple ways data can be unreachable, typically because it’s:
- Inconsistent, in which case humans might not know how to look it up and database JOINs might fail.
- Unintegrated, in which case one application might not be able to use data that another happily maintains. (This is the classic data silo problem.)
Inconsistency can take multiple forms, including: Read more
IT-centric notes on the future of health care
It’s difficult to project the rate of IT change in health care, because:
- Health care is suffused with technology — IT, medical device and biotech alike — and hence has the potential for rapid change. However, it is also the case that …
- … health care is heavily bureaucratic, political and regulated.
Timing aside, it is clear that health care change will be drastic. The IT part of that starts with vastly comprehensive electronic health records, which will be accessible (in part or whole as the case may be) by patients, care givers, care payers and researchers alike. I expect elements of such records to include:
- The human-generated part of what’s in ordinary paper health records today, but across a patient’s entire lifetime. This of course includes notes created by doctors and other care-givers.
- Large amounts of machine-generated data, including:
- The results of clinical tests. Continued innovation can be expected in testing, for reasons that include:
- Most tests exploit electronic technology. Progress in electronics is intense.
- Biomedical research is itself intense.
- In particular, most research technologies (for example gene sequencing) can be made cheap enough over time to be affordable clinically.
- The output of consumer health-monitoring devices — e.g. Fitbit and its successors. The buzzword here is “quantified self”, but what it boils down to is that every moment of our lives will be measured and recorded.
- The results of clinical tests. Continued innovation can be expected in testing, for reasons that include:
These vastly greater amounts of data cited above will allow for greatly changed analytics.
Read more
A new logical data layer?
I’m skeptical of data federation. I’m skeptical of all-things-to-all-people claims about logical data layers, and in particular of Gartner’s years-premature “Logical Data Warehouse” buzzphrase. Still, a reasonable number of my clients are stealthily trying to do some kind of data layer middleware, as are other vendors more openly, and I don’t think they’re all crazy.
Here are some thoughts as to why, and also as to challenges that need to be overcome.
There are many things a logical data layer might be trying to facilitate — writing, querying, batch data integration, real-time data integration and more. That said:
- When you’re writing data, you want it to be banged into a sufficiently-durable-to-acknowledge condition fast. If acknowledgements are slow, performance nightmares can ensue. So writing is the last place you want an extra layer, perhaps unless you’re content with the durability provided by an in-memory data grid.
- Queries are important. Also, they formally are present in other tasks, such as data transformation and movement. That’s why data manipulation packages (originally Pig, now Hive and fuller SQL) are so central to Hadoop.
Cask and CDAP
For starters:
- Continuuity toured in 2012 and touted its “app server for Hadoop” technology.
- Continuuity recently changed its name to Cask and went open source.
- Cask’s product is now called CDAP (Cask Data Application Platform). It’s still basically an app server for Hadoop and other “big data” — ouch do I hate that phrase — data stores.
- Cask and Cloudera partnered.
- I got a more technical Cask briefing this week.
Also:
- App servers are a notoriously amorphous technology. The focus of how they’re used can change greatly every couple of years.
- Partly for that reason, I was unimpressed by Continuuity’s original hype-filled positioning.
So far as I can tell:
- Cask’s current focus is to orchestrate job flows, with lots of data mappings.
- This is supposed to provide lots of developer benefits, for fairly obvious reasons. Those are pitched in terms of an integration story, more in a “free you from the mess of a many-part stack” sense than strictly in terms of data integration.
- CDAP already has a GUI to monitor what’s going on. A GUI to specify workflows is coming very soon.
- CDAP doesn’t consume a lot of cycles itself, and hence isn’t a real risk for unpleasant overhead, if “overhead” is narrowly defined. Rather, performance drags could come from …
- … sub-optimal choices in data mapping, database design or workflow composition.
Quick update on Tachyon
I’m on record as believing that:
- Hadoop needs a memory-centric storage grid.
- Tachyon is a strong candidate to fill the role.
That said:
- It’s an open secret that there will be a Tachyon company. However, …
- … no details have been publicized. Indeed, the open secret itself is still officially secret.
- Tachyon technology, which just hit 0.6 a couple of days ago, still lacks many features I regard as essential.
- As a practical matter, most Tachyon interest to date has been associated with Spark. This makes perfect sense given Tachyon’s origin and initial technical focus.
- Tachyon was in 50 or more sites last year. Most of these sites were probably just experimenting with it. However …
- … there are production Tachyon clusters with >100 nodes.
As a reminder of Tachyon basics: Read more