In-memory DBMS
Analysis of memory-centric OLTP DBMS. Related subjects include:
Detailed analysis of Perst and other in-memory object-oriented DBMS
Dan Weinreb — inspired by but not linking to my recent short post on McObject’s object-oriented in-memory DBMS Perst — has posted a detailed discussion of Perst on his own blog. For context, he compares it briefly to analogous products, most especially Progress’s — which used to be ObjectStore, of which Dan was the chief architect.
This was based on documentation and general sleuthing (Dan figured out who McObject got Perst from), rather than hands-on experience, so performance figures and the like aren’t validated. Still, if you’re interested in such technology, it’s a fascinating post.
Categories: In-memory DBMS, McObject, Memory-centric data management, Object | Leave a Comment |
Open source in-memory DBMS
I’ve gotten email about two different open source in-memory DBMS products/projects. I don’t know much about either, but in case you care, here are some pointers to more info.
First, the McObject guys — who also sell a relational in-memory product — have an object-oriented, apparently Java-centric product called Perst. They’ve sent over various press releases about same, the details of which didn’t make much of an impression on me. (Upon review, I see that one of the main improvements they cite in Perst 3.0 is that they added 38 pages of documentation.)
Second, I just got email about something called CSQL Cache. You can read more about CSQL Cache here, if you’re willing to navigate some fractured English. CSQL’s SourceForge page is here. My impression is that CSQL Cache is an in-memory DBMS focused on, you guessed it, caching. It definitely seems to talk SQL, but possibly its native data model is of some other kind (there are references both to “file-based” and “network”.)
Categories: Cache, DBMS product categories, In-memory DBMS, McObject, Memory-centric data management, Object, OLTP, Open source | 5 Comments |
McObject eXtremeDB — a solidDB alternative
McObject — vendor of memory-centric DBMS eXtremeDB — is a tiny, tiny company, without a development team of the size one would think needed to turn out one or more highly-reliable DBMS. So I haven’t spent a lot of time thinking about whether it’s a serious alternative to solidDB for embedded DBMS, e.g. in telecom equipment. However:
- IBM’s acquisition of Solid seems to suggest a focus on DB2 caching rather than the embedded market
- McObject actually has built up something of a customer list, as per the boilerplate on any of its press releases.
And they do seem to have some nice features, including Patricia tries (like solidDB), R-trees (for geospatial), and some kind of hybrid disk-centric/memory-centric operation.
Categories: GIS and geospatial, In-memory DBMS, McObject, Memory-centric data management, solidDB | 6 Comments |
The architectural assumptions of H-Store
I wrote yesterday about the H-Store project, the latest from the team of researchers who also brought us C-Store and its commercialization Vertica. H-Store is designed to drastically improve efficiency in OLTP database processing, in two ways. First, it puts everything in RAM. Second, it tries to gain an additional order of magnitude on in-memory performance versus today’s DBMS designs by, for example, taking a very different approach to ensuring ACID compliance.
Today I had the chance to talk with two more of the H-Store researchers, Sam Madden and Daniel Abadi. Read more
Categories: Database diversity, In-memory DBMS, Memory-centric data management, OLTP, VoltDB and H-Store | 5 Comments |
Mike Stonebraker calls for the complete destruction of the old DBMS order
Last week, Dan Weinreb tipped me off to something very cool: Mike Stonebraker and a group of MIT/Brown/Yale colleagues are calling for a complete rewrite of OLTP DBMS. And they have a plan for how to do it, called H-Store, as per a paper and an associated slide presentation.
Categories: Database diversity, In-memory DBMS, Memory-centric data management, Michael Stonebraker, OLTP, Theory and architecture, VoltDB and H-Store | 36 Comments |
IBM acquires SolidDB to compete with Oracle TimesTen
IBM is acquiring Solid Information Technology, makers of solidDB. Some quick comments:
- solidDB is actually a very interesting hybrid disk/in-memory memory-centric database management system. However, the press release announcing the deal makes it sound as if solidDB is in-memory only.
- That strongly suggests that IBM is buying Solid mainly to compete with Oracle TimesTen. As of last June, solidDB was already IBM’s TimesTen answer via a partnership; this deal just solidifies that arrangement.
- This probably isn’t good news for Solid’s MySQL engine. That’s a pity, since solidDB technically has the potential to be the best MySQL engine around.
- Notwithstanding IBM’s presumed intentions, Solid’s main market success historically is as an embedded system in telecommunications equipment, network software, and similar systems.
- Last year I wrote a white paper on memory-centric data management, showcasing four products. IBM now has bought two of them, namely Solid’s and Applix’s (via Cognos).
- Comparisons to IBM’s embedded Java DBMS Cloudscape are pointless. That’s just a failed product vs. solidDB or Sybase SQL Anywhere, and IBM long ago cut its losses.
Categories: Cache, Cognos, IBM and DB2, In-memory DBMS, Memory-centric data management, MySQL, OLTP, Oracle TimesTen, solidDB, Sybase | 5 Comments |
Webinar Wednesday June 27 at 2:00 pm ET
I’m sorry for the short notice, but — well, never mind what the distractions have been. This Wednesday, at 2:00 pm Eastern time, I’m doing a webinar on behalf of Solid. The core subject is memory-centric OLTP data management. I will of course also cover some DBMS and memory-centric generalities.
More info and sign-up can be found here.
Categories: In-memory DBMS, Memory-centric data management, OLTP, solidDB | Leave a Comment |
Memory-centric vs. conventional DBMS — a Solid difference
I had the chance to talk at length with Solid Information Technology tech guru Antoni Wolski about their memory-centric DBMS technology architecture. The most urgent topic was what made in-memory database managers inherently faster than disk-based ones that happened to have all the data in cache. But we didn’t really separate that subject from the general topic of how they made their memory-centric technology run fast, from its introduction in 2002 through substantial upgrades in the most recent release.
There were 4 main subtopics to the call:
1. Indexing structures that are very different from those of disk-based DBMS.
2. Optimizations to those indexing structures.
3. Optimizations to logging and checkpointing.
4. Miscellaneous architectural issues.
Read more
Categories: In-memory DBMS, Memory-centric data management, OLTP, solidDB | 4 Comments |
Memory-centric data management whitepaper
I have finally finished and uploaded the long-awaited white paper on memory-centric data management.
This is the project for which I origially coined the term “memory-centric data management,” after realizing that the prevalent “in-memory DBMS” creates all sorts of confusion about how and whether data persists on disk. The white paper clarifies and updates points I have been making about memory-centric data management since last summer. Sponsors included:
- Applix, vendors of in-memory/memory-centric MOLAP tool TM1
- Progress Software, vendors of ObjectStore, an OODBMS that has more impressive references in-memory or otherwise memory-centric than it does in classical disk-based configurations, and also of the Apama stream processing products
- SAP, vendors of the BI Accelerator functionality of SAP NetWeaver, or whatever tortured name they want to give it this month — basically, that’s a very cool in-memory columnar data mart technology
- Solid Information Technology, vendor of hybrid in-memory/disk-based OLTP RDBMS. Historically focused on the embedded systems market, especially telecom and networking, they’ve recently been in the news because of a deal with MySQL that is designed to extend their reach.
- Intel, makers of the processors used to run a lot of the other sponsors’ products (including all BI Accelerator installations to date).
If there’s one area in my research I’m not 100% satisfied with, it may be the question of where the true hardware bottlenecks to memory-centric data management lie (it’s obvious that the bottleneck to disk-centric data management is random disk access). Is it processor interconnect (around 1 GB/sec)? Is it processor-to-cache connections (around 5 GB/sec)? My prior pronouncements, the main body of the white paper, and the Intel Q&A appendix to the white paper may actually have slightly different spins on these points.
And by the way — the current hard limit on RAM/board isn’t 2^64 bytes, but a “mere” 2^40. But don’t worry; it will be up to 2^48 long before anybody actually puts 256 gigabytes under the control of a single processor.
Categories: Cognos, Companies and products, In-memory DBMS, Intel, Memory-centric data management, MOLAP, Open source, Progress, Apama, and DataDirect, SAP AG, solidDB | 2 Comments |
Defining and surveying “Memory-centric data management”
I’m writing more and more about memory-centric data management technology these days, including in my latest Computerworld column. You may be wondering what that term refers to. Well, I’ve basically renamed what are commonly called “in-memory DBMS,” for what I think is a very good reason: Most of the products in the category aren’t true DBMS, aren’t wholly in-memory, or both! Indeed, if you catch me in a grouchy mood I might argue that “in-memory DBMS” is actually a contradiction in terms.
I’ll give a quick summary of the vendors and products I am focusing on in this newly-named category, and it should be clearer what I mean:
- TimesTen (now owned by Oracle): TimesTen is the quintessentional “in-memory DBMS.” It’s a fairly full relational DBMS, but if you want to persist memory to disk it has to be handed off to a conventional DBMS. Historically, that has usually been MySQL or Oracle. TimesTen’s biggest market penetration has been in financial trading.
- Solid Information Technology‘s BoostEngine: Solid is a Finnish company (or was — it’s pretty American now) specializing in embedded DBMS sold mainly for telecommunication uses. Big OEM customers include several well-known telecom equipment manufacturers and HP (for OpenView). “Embedded” often means no DBA, no monitor, no keyboard — they box manufacturer installs it and there it stays for the life of the product. Solid has to offer strong replication capabilities, since its products are often used in highly distributed (e.g., multiblade, multibox) environments. So it’s taken the next step and exploited the replication by allowing customers to use some instances of the product disklessly.
- Event-stream products from Streambase and Progress: The canonical application for event-stream products is automating financial trading decisions based on the flow of market information. Mike Stonebraker, the brains behind Streambase, has recently popularized the idea; Progress bought Apama, who actually have been in the business longer. These applications require even more speed than the financial trading apps that TimesTen handles, and they discard most of the information they look at. In-memory is the only way to go.
- Progress’s ObjectStore: ObjectStore comes from the company Object Design, which merged into Excelon, which was acquired by Progress. It’s really a toolkit for building DBMS and similar systems, which is why it’s at various times been marketed as an OODBMS and an XML DBMS, without a lot of success either way. But there have been a few sterling apps built in ObjectStore even so, including a key part of the Amazon bookstore Despite this limited market success, a significant fraction of Progress’s best engineering talent has moved over to the Real-Time Division to focus on ObjectStore and other memory-centric products. The memory-centric aspect of ObjectStore is this: ObjectStore’s big virtue is that it gets objects from disk to memory and vice-versa very efficiently, then distributes and caches them around a network as needed. This was originally invented for client/server processing, but works fine in a multi-server thin client setup as well. And object processing, of course, relies on a whole lot of pointers. And pointer-chasing is pretty much the worst way to deal with the disk speed barrier, unless you do it in main memory.
- Applix‘s TM1: Like many companies in the analytics area, Applix has had trouble deciding whether it sells applications, BI system software, or both. But in any case its core technology is TM1, a memory-centric MOLAP offering. Traditional MOLAP products reside on the horns of a nasty dilemma: They rely on precalculation to give good performance, but that causes ghastly database explosion. Applix gets out of this problem by doing no precalculation whatsoever, loading the data into main memory, and executing all queries on the fly.
- SAP’s BI Accelerator: SAP is building out an elaborate technology stack with NetWeaver, especially in the BI area. One important aspect is that the full data warehouse is logically broken (or copied) into a series of data marts called “InfoCubes.” BI Accelerator takes the logical next step, loading an entire InfoCube into main memory. Almost every query is executed via a full table scan, which would be insane on disk but makes perfect sense when the data is already in RAM.
So there you have it. There are a whole lot of technologies out there that manage data in RAM, in ways that would make little or no sense if disks were more intimately involved. Conventional DBMS also try to exploit RAM and limit disk access, via caching; but generally the data access methods they use in RAM are pretty similar to those they use when going out to disk. So memory-centric systems can have a major advantage.