July 2, 2012

Catching up with Cray

Cray is a legendary name in supercomputing hardware. Cray CTO Bill Blake (Netezza’s early-rise VP Development) seem to be there in part because of Cray’s name and history. I’m now consulting to Cray largely because of Bill Blake, specifically to Cray subsidiary Yarcdata. Along the way, I’ve picked up enough about Cray in general — largely from Bill and from Cray president Pete Ungaro — to perhaps be worth splitting out as a separate post.

Cray business highlights include:

I haven’t sorted through all the details in Cray’s SEC filings, but huge government contracts play a big role, as do the associated revenue recognition delays.

At the highest level, Cray’s technical story looks like: Read more

June 27, 2012

Schooner got acquired by SanDisk

SanDisk has acquired my client Schooner Information Technology. Notes on that include:

That’s about all I have at this time.

June 19, 2012

Hadoop distributions: CDH 4, HDP 1, Hadoop 2.0, Hadoop 1.0 and all that

This is part of a four-post series, covering:

The posts depend on each other in various ways.

My clients at Cloudera and Hortonworks have somewhat different views as to the maturity of various pieces of Hadoop technology. In particular:

*”CDH” stands, due to some trademarking weirdness, for “Cloudera’s Distribution including Apache Hadoop”. “HDP” stands for “Hortonworks Data Platform”.

Read more

June 18, 2012

Introduction to MemSQL

I talked with MemSQL shortly before today’s launch. MemSQL technology basics are:

MemSQL’s performance claims include:

MemSQL company basics include: Read more

June 16, 2012

Introduction to Metamarkets and Druid

I previously dropped a few hints about my clients at Metamarkets, mentioning that they:

But while they’re a joy to talk with, writing about Metamarkets has been frustrating, with many hours and pages of wasted of effort. Even so, I’m trying again, in a three-post series:

Much like Workday, Inc., Metamarkets is a SaaS (Software as a Service) company, with numerous tiers of servers and an affinity for doing things in RAM. That’s where most of the similarities end, however, as  Metamarkets is a much smaller company than Workday, doing very different things.

Metamarkets’ business is SaaS (Software as a Service) business intelligence, on large data sets, with low latency in both senses (fresh data can be queried on, and the queries happen at RAM speed). As you might imagine, Metamarkets is used by digital marketers and other kinds of internet companies, whose data typically wants to be in the cloud anyway. Approximate metrics for Metamarkets (and it may well have exceeded these by now) include 10 customers, 100,000 queries/day, 80 billion 100-byte events/month (before summarization), 20 employees, 1 popular CEO, and a metric ton of venture capital.

To understand how Metamarkets’ technology works, it probably helps to start by realizing: Read more

June 3, 2012

Introduction to Cloudant

Cloudant is one of the few NoSQL companies with >100 paying subscription customers. For starters:

Company demographics include:

The Cloudant guys gave me some customer counts in May that weren’t much higher than those they gave me in February, and seem to have forgotten to correct the discrepancy. Oh well. The latter (probably understated) figures included ~160 paying customers, of which:

The largest Cloudant deployments seem to be in the 10s of terabytes, across a very low double digit number of servers.

Read more

April 24, 2012

Notes on the Hadoop and HBase markets

I visited my clients at Cloudera and Hortonworks last week, along with scads of other companies. A few of the takeaways were:

March 27, 2012

DataStax Enterprise and Cassandra revisited

My last post about DataStax Enterprise and Cassandra didn’t go so well. As follow-up, I chatted for two hours with Rick Branson and Billy Bosworth of DataStax. Hopefully I can do better this time around.

For starters, let me say there are three kinds of data management nodes in DataStax Enterprise:

Cassandra, Solr, Lucene, and Hadoop are all Apache projects.

If we look at this from the standpoint of DML (Data Manipulation Language) and data access APIs:

In addition, it is sometimes recommended that you use “in-entity caching”, where an entire data structure (e.g. in JSON) winds up in a single Cassandra column.

The two main ways to get direct SQL* access to data in DataStax Enterprise are:

*or very SQL-like, depending on how you view things

Before going further, let’s recall some Cassandra basics: Read more

March 26, 2012

CodeFutures/dbShards update

I’ve been talking a fair bit with Cory Isaacson, CEO of my client CodeFutures, which makes dbShards. Business notes include:

Apparently, the figure of 6 dbShards customers in July, 2010 is more comparable to today’s 20ish contracts than to today’s 7-8 production users. About 4 of the original 6 are in production now.

NDA stuff aside, the main technical subject we talked about is something Cory calls “relational sharding”. The point is that dbShards’ transparent sharding can be done in such a way as to make many joins be single-server. Specifically:

dbShards can’t do cross-shard joins, but it can do distributed transactions comprising multiple updates. Cory argues persuasively that in almost all cases this is enough; but I see cross-shard joins as a feature that should someday be added to dbShards even so.

The real issue with dbShards’ transparent sharding is ensuring it’s really transparent. Cory regards as typical a customer with a couple thousand tables, who had to change a dozen or so SQL statements to implement dbShards. But there are near-term plans to automate the number of SQL changes needed down to 0. The essence of that change is this: Read more

March 21, 2012

DataStax Enterprise 2.0

Edit: Multiple errors in the post below have been corrected in a follow-on post about DataStax Enterprise and Cassandra.

My client DataStax is announcing DataStax Enterprise 2.0. The big point of the release is that there’s a bunch of stuff integrated together, including at least:

DataStax stresses that all this runs on the same cluster, with the same administrative tools and so on. For example, on a single cluster:

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.