MariaDB and MaxScale
I chatted with the MariaDB folks on Tuesday. Let me start by noting:
- MariaDB, the product, is a MySQL fork.
- MariaDB, product and company alike, are essentially a reaction to Oracle’s acquisition of MySQL. A lot of the key players are previously from MySQL.
- MariaDB, the company, is the former SkySQL …
- … which acquired or is the surviving entity of a merger with The Monty Program, which originated MariaDB. According to Wikipedia, something called the MariaDB Foundation is also in the mix.
- I get the impression SkySQL mainly provided services around MySQL, especially remote DBA.
- It appears that a lot of MariaDB’s technical differentiation going forward is planned to be in a companion product called MaxScale, which was released into Version 1.0 general availability earlier this year.
The numbers around MariaDB are a little vague. I was given the figure that there were ~500 customers total, but I couldn’t figure out what they were customers for. Remote DBA services? MariaDB support subscriptions? Something else? I presume there are some customers in each category, but I don’t know the mix. Other notes on MariaDB the company are:
- ~80 people in ~15 countries.
- 20-25 engineers, which hopefully doesn’t count a few field support people.
- “Tiny” headquarters in Helsinki.
- Business leadership growing in the US and especially the SF area.
MariaDB, the company, also has an OEM business. Part of their pitch is licensing for connectors — specifically LGPL — that hopefully gets around some of the legal headaches for MySQL engine suppliers.
MaxScale is a proxy, which starts out by intercepting and parsing MariaDB queries. Read more
Categories: Database compression, Hadoop, IBM and DB2, Market share and customer counts, Mid-range, MySQL, Open source, Tokutek and TokuDB, Transparent sharding | 1 Comment |
More notes on HBase
1. Continuing from last week’s HBase post, the Cloudera folks were fairly proud of HBase’s features for performance and scalability. Indeed, they suggested that use cases which were a good technical match for HBase were those that required fast random reads and writes with high concurrency and strict consistency. Some of the HBase architecture for query performance seems to be:
- Everything is stored in sorted files. (I didn’t probe as to what exactly the files were sorted on.)
- Files have indexes and optional Bloom filters.
- Files are marked with min/max field values and time stamp ranges, which helps with data skipping.
Notwithstanding that a couple of those features sound like they might help with analytic queries, the base expectation is that you’ll periodically massage your HBase data into a more analytically-oriented form. For example — I was talking with Cloudera after all — you could put it into Parquet.
2. The discussion of which kinds of data are originally put into HBase was a bit confusing.
- HBase is commonly used to receive machine-generated data. Everybody knows that.
- Cloudera drew a distinction between:
- Straightforward time series, which should probably just go into HDFS (Hadoop Distributed File System) rather than HBase.
- Data that is bucketed by entity, which likely should go into HBase. Examples of entities are specific users or devices.
- Cloudera also reminded me that OpenTSDB, a popular time series data store, runs over HBase.
OpenTSDB, by the way, likes to store detailed data and aggregates side-by-side, which resembles a pattern I discussed in my recent BI for NoSQL post.
3. HBase supports caching, tiered storage, and so on. Cloudera is pretty sure that it is publicly known (I presume from blog posts or conference talks) that: Read more
Categories: Cloudera, eBay, Facebook, Hadoop, HBase, Market share and customer counts, NoSQL, Open source, Petabyte-scale data management, Specific users, Yahoo | 4 Comments |
Notes on HBase
I talked with a couple of Cloudera folks about HBase last week. Let me frame things by saying:
- The closest thing to an HBase company, ala MongoDB/MongoDB or DataStax/Cassandra, is Cloudera.
- Cloudera still uses a figure of 20% of its customers being HBase-centric.
- HBaseCon and so on notwithstanding, that figure isn’t really reflected in Cloudera’s marketing efforts. Cloudera’s marketing commitment to HBase has never risen to nearly the level of MongoDB’s or DataStax’s push behind their respective core products.
- With Cloudera’s move to “zero/one/many” pricing, Cloudera salespeople have little incentive to push HBase hard to accounts other than HBase-first buyers.
Also:
- Cloudera no longer dominates HBase development, if it ever did.
- Cloudera is the single biggest contributor to HBase, by its count, but doesn’t make a majority of the contributions on its own.
- Cloudera sees Hortonworks as having become a strong HBase contributor.
- Intel is also a strong contributor, as are end user organizations such as Chinese telcos. Not coincidentally, Intel was a major Hadoop provider in China before the Intel/Cloudera deal.
- As far as Cloudera is concerned, HBase is just one data storage technology of several, focused on high-volume, high-concurrency, low-latency short-request processing. Cloudera thinks this is OK because of HBase’s strong integration with the rest of the Hadoop stack.
- Others who may be inclined to disagree are in several cases doing projects on top of HBase to extend its reach. (In particular, please see the discussion below about Apache Phoenix and Trafodion, both of which want to offer relational-like functionality.)
Categories: Cloudera, Clustering, Data models and architecture, Database diversity, Hadoop, HBase, Hortonworks, HP and Neoview, Intel, Market share and customer counts, NoSQL, Open source | 4 Comments |
Cask and CDAP
For starters:
- Continuuity toured in 2012 and touted its “app server for Hadoop” technology.
- Continuuity recently changed its name to Cask and went open source.
- Cask’s product is now called CDAP (Cask Data Application Platform). It’s still basically an app server for Hadoop and other “big data” — ouch do I hate that phrase — data stores.
- Cask and Cloudera partnered.
- I got a more technical Cask briefing this week.
Also:
- App servers are a notoriously amorphous technology. The focus of how they’re used can change greatly every couple of years.
- Partly for that reason, I was unimpressed by Continuuity’s original hype-filled positioning.
So far as I can tell:
- Cask’s current focus is to orchestrate job flows, with lots of data mappings.
- This is supposed to provide lots of developer benefits, for fairly obvious reasons. Those are pitched in terms of an integration story, more in a “free you from the mess of a many-part stack” sense than strictly in terms of data integration.
- CDAP already has a GUI to monitor what’s going on. A GUI to specify workflows is coming very soon.
- CDAP doesn’t consume a lot of cycles itself, and hence isn’t a real risk for unpleasant overhead, if “overhead” is narrowly defined. Rather, performance drags could come from …
- … sub-optimal choices in data mapping, database design or workflow composition.
Growth in machine-generated data
In one of my favorite posts, namely When I am a VC Overlord, I wrote:
I will not fund any entrepreneur who mentions “market projections” in other than ironic terms. Nobody who talks of market projections with a straight face should be trusted.
Even so, I got talked today into putting on the record a prediction that machine-generated data will grow at more than 40% for a while.
My reasons for this opinion are little more than:
- Moore’s Law suggests that the same expenditure will buy 40% or so more machine-generated data each year.
- Budgets spent on producing machine-generated data seem to be going up.
I was referring to the creation of such data, but the growth rates of new creation and of persistent storage are likely, at least at this back-of-the-envelope level, to be similar.
Anecdotal evidence actually suggests 50-60%+ growth rates, so >40% seemed like a responsible claim.
Related links
- My recent survey of machine-generated data topics started with a list of many different kinds of the stuff.
- My 2009 post on data warehouse volume growth makes similar points, and notes that high growth rates mean we likely can never afford to keep all machine-generated data permanently.
- My 2011 claim that traditional databases will migrate into RAM is sort of this argument’s flipside.
Categories: Market share and customer counts | 7 Comments |
A few numbers from MapR
MapR put out a press release aggregating some customer information; unfortunately, the release is a monument to vagueness. Let me start by saying:
- I don’t know for sure, but I’m guessing Derrick Harris was incorrect in suspecting that this release was a reaction to my recent post about Hortonworks’ numbers. For one thing, press releases usually don’t happen that quickly.
- And as should be obvious from the previous point — notwithstanding that MapR is a client, I had no direct involvement in this release.
- In general, I advise clients and other vendors to put out the kind of aggregate of customer success stories found in this release. However, I would like to see more substance than MapR offered.
Anyhow, the key statement in the MapR release is:
… the number of companies that have a paid subscription for MapR now exceeds 700.
Unfortunately, that includes OEM customers as well as direct ones; I imagine MapR’s direct customer count is much lower.
In one gesture to numerical conservatism, MapR did indicate by email that it counts by overall customer organization, not by department/cluster/contract (i.e., not the way Hortonworks does). Read more
Categories: Hadoop, Health care, MapR, Market share and customer counts, Pricing, Telecommunications | 3 Comments |
Notes on the Hortonworks IPO S-1 filing
Given my stock research experience, perhaps I should post about Hortonworks’ initial public offering S-1 filing. 🙂 For starters, let me say:
- Hortonworks’ subscription revenues for the 9 months ended last September 30 appear to be:
- $11.7 million from everybody but Microsoft, …
- … plus $7.5 million from Microsoft, …
- … for a total of $19.2 million.
- Hortonworks states subscription customer counts (as per Page 55 this includes multiple “customers” within the same organization) of:
- 2 on April 30, 2012.
- 9 on December 31, 2012.
- 25 on April 30, 2013.
- 54 on September 30, 2013.
- 95 on December 31, 2013.
- 233 on September 30, 2014.
- Per Page 70, Hortonworks’ total September 30, 2014 customer count was 292, including professional services customers.
- Non-Microsoft subscription revenue in the quarter ended September 30, 2014 seems to have been $5.6 million, or $22.5 million annualized. This suggests Hortonworks’ average subscription revenue per non-Microsoft customer is a little over $100K/year.
- This IPO looks to be a sharply “down round” vs. Hortonworks’ Series D financing earlier this year.
- In March and June, 2014, Hortonworks sold stock that subsequently was converted into 1/2 a Hortonworks share each at $12.1871 per share.
- The tentative top of the offering’s price range is $14/share.
- That’s also slightly down from the Series C price in mid-2013.
And, perhaps of interest only to me — there are approximately 50 references to YARN in the Hortonworks S-1, but only 1 mention of Tez.
Categories: Hadoop, Hortonworks, HP and Neoview, Market share and customer counts, Microsoft and SQL*Server, Pricing, Teradata, Yahoo | 8 Comments |
Thoughts and notes, Thanksgiving weekend 2014
I’m taking a few weeks defocused from work, as a kind of grandpaternity leave. That said, the venue for my Dances of Infant Calming is a small-but-nice apartment in San Francisco, so a certain amount of thinking about tech industries is inevitable. I even found time last Tuesday to meet or speak with my clients at WibiData, MemSQL, Cloudera, Citus Data, and MongoDB. And thus:
1. I’ve been sloppy in my terminology around “geo-distribution”, in that I don’t always make it easy to distinguish between:
- Storing different parts of a database in different geographies, often for reasons of data privacy regulatory compliance.
- Replicating an entire database into different geographies, often for reasons of latency and/or availability/ disaster recovery,
The latter case can be subdivided further depending on whether multiple copies of the data can accept first writes (aka active-active, multi-master, or multi-active), or whether there’s a clear single master for each part of the database.
What made me think of this was a phone call with MongoDB in which I learned that the limit on number of replicas had been raised from 12 to 50, to support the full-replication/latency-reduction use case.
2. Three years ago I posted about agile (predictive) analytics. One of the points was:
… if you change your offers, prices, ad placement, ad text, ad appearance, call center scripts, or anything else, you immediately gain new information that isn’t well-reflected in your previous models.
Subsequently I’ve been hearing more about predictive experimentation such as bandit testing. WibiData, whose views are influenced by a couple of Very Famous Department Store clients (one of which is Macy’s), thinks experimentation is quite important. And it could be argued that experimentation is one of the simplest and most direct ways to increase the value of your data.
3. I’d further say that a number of developments, trends or possibilities I’m seeing are or could be connected. These include agile and experimental predictive analytics in general, as noted in the previous point, along with: Read more
Datameer at the time of Datameer 5.0
Datameer checked in, having recently announced general availability of Datameer 5.0. So far as I understood, Datameer is still clearly in the investigative analytics business, in that:
- Datameer does business intelligence, but not at human real-time speeds. Datameer query durations are sometimes sub-minute, but surely not sub-second.
- Datameer also does lightweight predictive analytics/machine learning — k-means clustering, decision trees, and so on.
Key aspects include:
- Datameer runs straight against Hadoop.
- Like many other analytic offerings, Datameer is meant to be “self-service”, for line-of-business business analysts, and includes some “data preparation”. Datameer also has had some data profiling since Datameer 4.0.
- The main way of interacting with Datameer seems to be visual analytic programming. However, I Datameer has evolved somewhat away from its original spreadsheet metaphor.
- Datameer’s primitives resemble those you’d find in SQL (e.g. JOINs, GROUPBYs). More precisely, that would be SQL with a sessionization extension; e.g., there’s a function called GROUPBYGAP.
- Datameer lets you write derived data back into Hadoop.
Categories: Business intelligence, Databricks, Spark and BDAS, Datameer, Hadoop, Log analysis, Market share and customer counts, Predictive modeling and advanced analytics, Web analytics | 7 Comments |
Snowflake Computing
I talked with the Snowflake Computing guys Friday. For starters:
- Snowflake is offering an analytic DBMS on a SaaS (Software as a Service) basis.
- The Snowflake DBMS is built from scratch (as opposed, to for example, being based on PostgreSQL or Hadoop).
- The Snowflake DBMS is columnar and append-only, as has become common for analytic RDBMS.
- Snowflake claims excellent SQL coverage for a 1.0 product.
- Snowflake, the company, has:
- 50 people.
- A similar number of current or past users.
- 5 referenceable customers.
- 2 techie founders out of Oracle, plus Marcin Zukowski.
- Bob Muglia as CEO.
Much of the Snowflake story can be summarized as cloud/elastic/simple/cheap.*
*Excuse me — inexpensive. Companies rarely like their products to be labeled as “cheap”.
In addition to its purely relational functionality, Snowflake accepts poly-structured data. Notes on that start:
- Ingest formats are JSON, XML or AVRO for now.
- I gather that the system automagically decides which fields/attributes are sufficiently repeated to be broken out as separate columns; also, there’s a column for the documents themselves.
I don’t know enough details to judge whether I’d call that an example of schema-on-need.
A key element of Snowflake’s poly-structured data story seems to be lateral views. I’m not too clear on that concept, but I gather: Read more