Kafka and Confluent
For starters:
- Kafka has gotten considerable attention and adoption in streaming.
- Kafka is open source, out of LinkedIn.
- Folks who built it there, led by Jay Kreps, now have a company called Confluent.
- Confluent seems to be pursuing a fairly standard open source business model around Kafka.
- Confluent seems to be in the low to mid teens in paying customers.
- Confluent believes 1000s of Kafka clusters are in production.
- Confluent reports 40 employees and $31 million raised.
At its core Kafka is very simple:
- Kafka accepts streams of data in substantially any format, and then streams the data back out, potentially in a highly parallel way.
- Any producer or consumer of data can connect to Kafka, via what can reasonably be called a publish/subscribe model.
- Kafka handles various issues of scaling, load balancing, fault tolerance and so on.
So it seems fair to say:
- Kafka offers the benefits of hub vs. point-to-point connectivity.
- Kafka acts like a kind of switch, in the telecom sense. (However, this is probably not a very useful metaphor in practice.)
Cloudera in the cloud(s)
Cloudera released Version 2 of Cloudera Director, which is a companion product to Cloudera Manager focused specifically on the cloud. This led to a discussion about — you guessed it! — Cloudera and the cloud.
Making Cloudera run in the cloud has three major aspects:
- Cloudera’s usual software, ported to run on the cloud platform(s).
- Cloudera Director, which for example launches cloud instances.
- Points of integration, e.g. taking information about security-oriented roles from the platform and feeding then to the role-based security that is specific to Cloudera Enterprise.
Features new in this week’s release of Cloudera Director include:
- An API for job submission.
- Support for spot and preemptable instances.
- High availability.
- Kerberos.
- Some cluster repair.
- Some cluster cloning.
I.e., we’re talking about some pretty basic/checklist kinds of things. Cloudera Director is evidently working for Amazon AWS and Google GCP, and planned for Windows Azure, VMware and OpenStack.
As for porting, let me start by noting: Read more
Oracle as the new IBM — has a long decline started?
When I find myself making the same observation fairly frequently, that’s a good impetus to write a post based on it. And so this post is based on the thought that there are many analogies between:
- Oracle and the Oracle DBMS.
- IBM and the IBM mainframe.
And when you look at things that way, Oracle seems to be swimming against the tide.
Drilling down, there are basically three things that can seriously threaten Oracle’s market position:
- Growth in apps of the sort for which Oracle’s RDBMS is not well-suited. Much of “Big Data” fits that description.
- Outright, widespread replacement of Oracle’s application suites. This is the least of Oracle’s concerns at the moment, but could of course be a disaster in the long term.
- Transition to “the cloud”. This trend amplifies the other two.
Oracle’s decline, if any, will be slow — but I think it has begun.
Oracle/IBM analogies
There’s a clear market lead in the core product category. IBM was dominant in mainframe computing. While not as dominant, Oracle is definitely a strong leader in high-end OTLP/mixed-use (OnLine Transaction Processing) RDBMS.
That market lead is even greater than it looks, because some of the strongest competitors deserve asterisks. Many of IBM’s mainframe competitors were “national champions” — Fujitsu and Hitachi in Japan, Bull in France and so on. Those were probably stronger competitors to IBM than the classic BUNCH companies (Burroughs, Univac, NCR, Control Data, Honeywell).
Similarly, Oracle’s strongest direct competitors are IBM DB2 and Microsoft SQL Server, each of which is sold primarily to customers loyal to the respective vendors’ full stacks. SAP is now trying to play a similar game.
The core product is stable, secure, richly featured, and generally very mature. Duh.
The core product is complicated to administer — which provides great job security for administrators. IBM had JCL (Job Control Language). Oracle has a whole lot of manual work overseeing indexes. In each case, there are many further examples of the point. Edit: A Twitter discussion suggests the specific issue with indexes has been long fixed.
Niche products can actually be more reliable than the big, super-complicated leader. Tandem Nonstop computers were super-reliable. Simple, “embeddable” RDBMS — e.g. Progress or SQL Anywhere — in many cases just work. Still, if you want one system to run most of your workload 24×7, it’s natural to choose the category leader. Read more
Categories: Cloud computing, Database diversity, Exadata, IBM and DB2, Market share and customer counts, Microsoft and SQL*Server, NoSQL, Oracle, Software as a Service (SaaS) | 28 Comments |
CDH 5.5
I talked with Cloudera shortly ahead of today’s announcement of Cloudera 5.5. Much of what we talked about had something or other to do with SQL data management. Highlights include:
- Impala and Kudu are being donated to Apache. This actually was already announced Tuesday. (Due to Apache’s rules, if I had any discussion with Cloudera speculating on the likelihood of Apache accepting the donations, I would not be free to relay it.)
- Cloudera is introducing SQL extensions so that Impala can query nested data structures. More on that below.
- The basic idea for the nested datatype support is that there are SQL extensions with a “dot” notation to let you get at the specific columns you need.
- From a feature standpoint, we’re definitely still in the early days.
- When I asked about indexes on these quasi-columns, I gathered that they’re not present in beta but are hoped for by the time of general availability.
- Basic data skipping, also absent in beta, seems to be more confidently expected in GA.
- This is for Parquet first, Avro next, and presumably eventually native JSON as well.
- This is said to be Dremel-like, at least in the case of Parquet. I must confess that I’m not familiar enough with Apache Drill to compare the two efforts.
- Cloudera is increasing its coverage of Spark in several ways.
- Cloudera is adding support for MLlib.
- Cloudera is adding support for SparkSQL. More on that below.
- Cloudera is adding support for Spark going against S3. The short answer to “How is this different from the Databricks service?” is:
- More “platform” stuff from the Hadoop stack (e.g. for data ingest).
- Less in the way of specific Spark usability stuff.
- Cloudera is putting into beta what it got in the Xplain.io acquisition, which it unfortunately is naming Cloudera Navigator Optimizer. More on that in a separate post.
- Impala and Hive are getting column-level security via Apache Sentry.
- There are other security enhancements.
- Some policy-based information lifecycle management is being added as well.
While I had Cloudera on the phone, I asked a few questions about Impala adoption, specifically focused on concurrency. There was mention of: Read more
Basho and Riak
Basho was on my (very short) blacklist of companies with whom I refuse to speak, because they have lied about the contents of previous conversations. But Tony Falco et al. are long gone from the company. So when Basho’s new management team reached out, I took the meeting.
For starters:
- Basho management turned over significantly 1-2 years ago. The main survivors from the old team are 1 each in engineering, sales, and services.
- Basho moved its headquarters to Bellevue, WA. (You get one guess as to where the new CEO lives.) Engineering operations are very distributed geographically.
- Basho claims that it is much better at timely product shipments than it used to be. Its newest product has a planned (or at least hoped-for) 8-week cadence for point releases.
- Basho’s revenue is ~90% subscription.
- Basho claims >200 enterprise clients, vs. 100-120 when new management came in. Unfortunately, I forgot to ask the usual questions about divisions vs. whole organizations, OEM sell-through vs. direct, etc.
- Basho claims an average contract value of >$100K, typically over 2-3 years. $9 million of that (which would be close to half the total, actually), comes from 2 particular deals of >$4 million each.
Basho’s product line has gotten a bit confusing, but as best I understand things the story is:
- There’s something called Riak Core, which isn’t even a revenue-generating product. However, it’s an open source project with some big users (e.g. Goldman Sachs, Visa), and included in pretty much everything else Basho promotes.
- Riak KV is the key-value store previously known as Riak. It generates the lion’s share of Basho’s revenue.
- Riak S2 is an emulation of Amazon S3. Basho thinks that Riak KV loses efficiency when objects get bigger than 1 MB or so, and that’s when you might want to use Riak S2 in addition or instead.
- Riak TS is for time series, and just coming out now.
- Also in the mix are some (extra charge) connectors for Redis and Spark. Presumably, there are more of these to come.
- There’s an umbrella marketing term of “Basho Data Platform”.
Technical notes on some of that include: Read more
Rocana’s world
For starters:
- My client Rocana is the renamed ScalingData, where Rocana is meant to signify ROot Cause ANAlysis.
- Rocana was founded by Omer Trajman, who I’ve referenced numerous times in the past, and who I gather is a former boss of …
- … cofounder Eric Sammer.
- Rocana recently told me it had 35 people.
- Rocana has a very small number of quite large customers.
Rocana portrays itself as offering next-generation IT operations monitoring software. As you might expect, this has two main use cases:
- Actual operations — figuring out exactly what isn’t working, ASAP.
- Security.
Rocana’s differentiation claims boil down to fast and accurate anomaly detection on large amounts of log data, including but not limited to:
- The sort of network data you’d generally think of — “everything” except packet-inspection stuff.
- Firewall output.
- Database server logs.
- Point-of-sale data (at a retailer).
- “Application data”, whatever that means. (Edit: See Tom Yates’ clarifying comment below.)
MongoDB update
One pleasure in talking with my clients at MongoDB is that few things are NDA. So let’s start with some numbers:
- >2,000 named customers, the vast majority of which are unique organizations who do business with MongoDB directly.
- ~75,000 users of MongoDB Cloud Manager.
- Estimated ~1/4 million production users of MongoDB total.
Also >530 staff, and I think that number is a little out of date.
MongoDB lacks many capabilities RDBMS users take for granted. MongoDB 3.2, which I gather is slated for early November, narrows that gap, but only by a little. Features include:
- Some JOIN capabilities.
- Specifically, these are left outer joins, so they’re for lookup but not for filtering.
- JOINs are not restricted to specific shards of data …
- … but do benefit from data co-location when it occurs.
- A BI connector. Think of this as a MongoDB-to- SQL translator. Using this does require somebody to go in and map JSON schemas and relational tables to each other. Once that’s done, the flow is:
- Basic SQL comes in.
- Filters and GroupBys are pushed down to MongoDB. A result set … well, it results. 🙂
- The result set is formatted into a table and returned to the system — for example a business intelligence tool — that sent the SQL.
- Database-side document validation, in the form of field-specific rules that combine into a single expression against which to check a document.
- This is fairly simple stuff — no dependencies among fields in the same document, let alone foreign key relationships.
- MongoDB argues, persuasively, that this simplicity makes it unlikely to recreate the spaghetti code maintenance nightmare that was 1990s stored procedures.
- MongoDB concedes that, for performance, it will ordinarily be a good idea to still do your validation on the client side.
- MongoDB points out that enforcement can be either strict (throw errors) or relaxed (just note invalid documents to a log). The latter option is what makes it possible to install this feature without breaking your running system.
There’s also a closed-source database introspection tool coming, currently codenamed MongoDB Scout. Read more
Categories: Business intelligence, EAI, EII, ETL, ELT, ETLT, Market share and customer counts, MongoDB, NoSQL, Open source, Structured documents, Text | 6 Comments |
Hadoop generalities
Occasionally I talk with an astute reporter — there are still a few left 🙂 — and get led toward angles I hadn’t considered before, or at least hadn’t written up. A blog post may then ensue. This is one such post.
There is a group of questions going around that includes:
- Is Hadoop overhyped?
- Has Hadoop adoption stalled?
- Is Hadoop adoption being delayed by skills shortages?
- What is Hadoop really good for anyway?
- Which adoption curves for previous technologies are the best analogies for Hadoop?
To a first approximation, my responses are: Read more
Teradata will support Presto
At the highest level:
- Presto is, roughly speaking, Facebook’s replacement for Hive, at least for queries that are supposed to run at interactive speeds.
- Teradata is announcing support for Presto with a classic open source pricing model.
- Presto will also become, roughly speaking, Teradata’s replacement for Hive.
- Teradata’s Presto efforts are being conducted by the former Hadapt.
Now let’s make that all a little more precise.
Regarding Presto (and I got most of this from Teradata)::
- To a first approximation, Presto is just another way to write SQL queries against HDFS (Hadoop Distributed File System). However …
- … Presto queries other data stores too, such as various kinds of RDBMS, and federates query results.
- Facebook at various points in time created both Hive and now Presto.
- Facebook started the Presto project in 2012 and now has 10 engineers on it.
- Teradata has named 16 engineers – all from Hadapt – who will be contributing to Presto.
- Known serious users of Presto include Facebook, Netflix, Groupon and Airbnb. Airbnb likes Presto well enough to have 1/3 of its employees using it, via an Airbnb-developed tool called Airpal.
- Facebook is known to have a cluster cited at 300 petabytes and 4000 users where Presto is presumed to be a principal part of the workload.
Daniel Abadi said that Presto satisfies what he sees as some core architectural requirements for a modern parallel analytic RDBMS project: Read more
MemSQL 4.0
I talked with my clients at MemSQL about the release of MemSQL 4.0. Let’s start with the reminders:
- MemSQL started out as in-memory OTLP (OnLine Transaction Processing) DBMS …
- … but quickly positioned with “We also do ‘real-time’ analytic processing” …
- … and backed that up by adding a flash-based column store option …
- … before Gartner ever got around to popularizing the term HTAP (Hybrid Transaction and Analytic Processing).
- There’s also a JSON option.
The main new aspects of MemSQL 4.0 are:
- Geospatial indexing. This is for me the most interesting part.
- A new optimizer and, I suppose, query planner …
- … which in particular allow for serious distributed joins.
- Some rather parallel-sounding connectors to Spark. Hadoop and Amazon S3.
- Usual-suspect stuff including:
- More SQL coverage (I forgot to ask for details).
- Some added or enhanced administrative/tuning/whatever tools (again, I forgot to ask for details).
- Surely some general Bottleneck Whack-A-Mole.
There’s also a new free MemSQL “Community Edition”. MemSQL hopes you’ll experiment with this but not use it in production. And MemSQL pricing is now wholly based on RAM usage, so the column store is quasi-free from a licensing standpoint is as well.