Data types
Analysis of data management technology optimized for specific datatypes, such as text, geospatial, object, RDF, or XML. Related subjects include:
- Any subcategory
- Database diversity
It’s hard to make data easy to analyze
It’s hard to make data easy to analyze. While everybody seems to realize this — a few marketeers perhaps aside — some remarks might be useful even so.
Many different technologies purport to make data easy, or easier, to an analyze; so many, in fact, that cataloguing them all is forbiddingly hard. Major claims, and some technologies that make them, include:
- “We get data into a form in which it can be analyzed.” This is the story behind, among others:
- Most of the data integration and ETL (Extract/Transform/Load) industries, software vendors and consulting firms alike.
- Many things that purport to be “analytic applications” or data warehouse “quick starts”.
- “Data reduction” use cases in event processing.*
- Text analytics tools.
- Splunk.
- “Forget all that transformation foofarah — just load (or write) data into our thing and start analyzing it immediately.” This at various times has been much of the story behind:
- Relational DBMS, according to their inventor E. F. Codd.
- MOLAP (Multidimensional OnLine Analytic Processing), also according to RDBMS inventor E. F. Codd.
- Any kind of analytic DBMS, or general purpose DBMS used for data warehousing.
- Newer kinds of analytic DBMS that are faster than older kinds.
- The “data mart spin-out” feature of certain analytic DBMS.
- In-memory analytic data stores.
- Hadoop.
- NoSQL DBMS that have a few analytic features.
- TokuDB, similarly.
- Electronic spreadsheets, from VisiCalc to Datameer.
- Splunk.
- “Our tools help you with specific kinds of analyses or analytic displays.” This is the story underlying, among others:
- The business intelligence industry.
- The predictive analytics industry.
- Algorithmic trading use cases in complex event processing.*
- Some analytic applications.
- Splunk.
*Complex event/stream processing terminology is always problematic.
My thoughts on all this start: Read more
Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — concepts
The 2012 Gartner Magic Quadrant for Data Warehouse Database Management Systems is out. I’ll split my comments into two posts — this one on concepts, and a companion on specific vendor evaluations.
Links:
- Maintaining working links to Gartner Magic Quadrants is an adventure. But as of early February, 2013, this link seems live.
- I also commented on the 2011, 2010, 2009, 2008, 2007, and 2006 Gartner Magic Quadrants for Data Warehouse DBMS.
Let’s start by again noting that I regard Gartner Magic Quadrants as a bad use of good research. On the facts:
- Gartner collects a lot of input from traditional enterprises. I envy that resource.
- Gartner also does a good job of rounding up vendor claims about user base sizes and the like. If nothing else, you should skim the MQ report for that reason.
- Gartner observations about product feature sets are usually correct, although not so consistently that they should be relied on.
When it comes to evaluations, however, the Gartner Data Warehouse DBMS Magic Quadrant doesn’t do as well. My concerns (which overlap) start:
- The Gartner MQ conflates many different use cases into one ranking (inevitable in this kind of work, but still regrettable).
- A number of the MQ vendor evaluations seem hard to defend. So do some of Gartner’s specific comments.
- Some of Gartner’s criteria seemingly amount to “parrots back our opinions to us”.
- As do I, Gartner thinks a vendor’s business and financial strength are important. But Gartner overdoes the matter, drilling down into picky issues it can’t hope to judge, such as assessing a vendor’s “ability to generate and develop leads.” *
- The 2012 Gartner Data Warehouse DBMS Magic Quadrant is closer to being a 1-dimensional ranking than 2-dimensional, in that entries are clustered along the line x=y. This suggests strong correlation among the results on various specific evaluation criteria.
Categories: Data integration and middleware, Data warehousing, Database compression, Emulation, transparency, portability, Hadoop, Market share and customer counts, Oracle, Text | 5 Comments |
B2C internet software
I recently opined that, especially for cutting-edge internet businesses, analytic applications were not a realistic option; rather, analytic application subsystems are the most you can currently expect. Erin Griffith further observed that the problem isn’t just confined to analytics:
“We didn’t need 90 percent of the stuff they were offering, and when we told them what we did need — integration with social, curation tools, individual boutiques and analytics — they had nothing”
… a suitable solution to merge his editorial staff’s output with his separate site for selling tickets to events and goods … was not available, so had to build his own hybrid publishing and commerce platform. Likewise, Birchbox had to build a custom backend so that it could include videos and editorial content alongside its e-commerce site.
… it’s DIY or die.
With that as background, let’s consider why building business-to-consumer internet software is so complicated.
I’d suggest that a consumer website starts with four major conceptual parts: Read more
Categories: Structured documents, Text, Web analytics | Leave a Comment |
Couchbase 2.0
My clients at Couchbase checked in.
- After multiple delays, Couchbase 2.0 is well into beta, with general availability being delayed by the holiday season as much as anything else.
- Couchbase (the company) now has >350 subscription customers, almost all for Couchbase (the product) — which is to say for what was known as Membase, which is basically a persistent version of Memcached.
- There also are many users of open source Couchbase, most famously LinkedIn.
- Orbitz is a much-mentioned flagship paying Couchbase customer.
- Couchbase customers mainly seem to be replacing a caching layer, Memcached or otherwise.
- Couchbase headcount is just under 100.
The big changes in Couchbase 2.0 versus the previous (1.8.x) version are:
- JSON storage, including secondary indexes.
- Multi-data-center replication.
- A back-end change from SQLite to a heavily forked version of CouchDB, called Couchstore.
Couchbase 2.0 is upwards-compatible with prior versions of Couchbase (and hence with Memcached), but not with CouchDB.
Technology notes on Couchbase 2.0 include: Read more
Categories: Basho and Riak, Cache, Cassandra, Clustering, Couchbase, MapReduce, Market share and customer counts, MongoDB, NoSQL, Open source, Structured documents | 5 Comments |
Incremental MapReduce
My clients at Cloudant, Couchbase, and 10gen/MongoDB (Edit: See Alex Popescu’s comment below) all boast the feature incremental MapReduce. (And they’re not the only ones.) So I feel like making a quick post about it. For starters, I’ll quote myself about Cloudant:
The essence of Cloudant’s incremental MapReduce seems to be that data is selected only if it’s been updated since the last run. Obviously, this only works for MapReduce algorithms whose eventual output can be run on different subsets of the target data set, then aggregated in a simple way.
These implementations of incremental MapReduce are hacked together by teams vastly smaller than those working on Hadoop, and surely fall short of Hadoop in many areas such as performance, fault-tolerance, and language support. That’s a given. Still, if the jobs are short and simple, those deficiencies may be tolerable.
A StackOverflow thread about MongoDB’s version of incremental MapReduce highlights some of the implementation challenges.
But all practicality aside, let’s return to the point that incremental MapReduce only works for some kinds of MapReduce-based algorithms, and consider how much of a limitation that really is. Looking at the Map steps sheds a little light: Read more
Categories: Cloudant, Couchbase, EAI, EII, ETL, ELT, ETLT, Hadoop, MapReduce, MongoDB, RDF and graphs | 1 Comment |
Hadapt Version 2
My clients at Hadapt are coming out with a Version 2 to be available in Q1 2013, and perhaps slipstreaming some of the features before then. At that point, it will be reasonable to regard Hadapt as offering:
- A very tight integration between an RDBMS-based analytic platform and Hadoop …
- … that is decidedly immature as an analytic RDBMS …
- … but which strongly improves the SQL capabilities of Hadoop (vs., say, the alternative of using Hive).
Solr is in the mix as well.
Hadapt+Hadoop is positioned much more as “better than Hadoop” than “a better scale-out RDBMS”– and rightly so, due to its limitations when viewed strictly from an analytic RDBMS standpoint. I.e., Hadapt is meant for enterprises that want to do several of:
- Dump multi-structured data into Hadoop.
- Refine or just move some of it into an RDBMS.
- Bring in data from other RDBMS.
- Process of all the above via Hadoop MapReduce.
- Process of all the above via SQL.
- Use full-text indexes on the data.
Hadapt has 6 or so production customers, a dozen or so more coming online soon, 35 or so employees (mainly in Cambridge or Poland), reasonable amounts of venture capital, and the involvement of a variety of industry luminaries. Hadapt’s biggest installation seems to have 10s of terabytes of relational data and 100s of TBs of multi-structured; Hadapt is very confident in its ability to scale an order of magnitude beyond that with the Version 2 product, and reasonably confident it could go even further.
At the highest level, Hadapt works like this: Read more
Notes, links and comments August 6, 2012
I haven’t done a notes/link/comments post for a while. Time for a little catch-up.
1. MySQL now has a memcached integration story. I haven’t checked the details. The MySQL team is pretty hard to talk with, due to the heavy-handedness of Oracle’s analyst relations.
2. The Large Hadron Collider offers some serious numbers, including:
- 1 petabyte/second.
- 6 x 109 collisions/second.
- Only 1 in 1013 collision records kept (which I guess knocks things down to a 100 byte/second average, from the standpoint of persistent storage).
- Real-time filtering by a cluster of several thousand machines, over a 25 nanosecond period.
3. One application area we don’t talk about much for analytic technologies is education. However: Read more
Categories: Cache, memcached, Memory-centric data management, MySQL, Open source, Petabyte-scale data management, RDF and graphs, Scientific research | Leave a Comment |
Clustrix 4.0 and other Clustrix stuff
It feels like time to write about Clustrix, which I last covered in detail in May, 2010, and which is releasing Clustrix 4.0 today. Clustrix and Clustrix 4.0 basics include:
- Clustrix makes a short-request processing appliance.
- As you might guess from the name, Clustrix is clustered — peer-to-peer, with no head node.
- The Clustrix appliance uses flash/solid-state storage.
- Traditionally, Clustrix has run a MySQL-compatible DBMS.
- Clustrix 4.0 introduces JSON support. More on that below.
- Clustrix 4.0 introduces a bunch of administrative features, and parallel backup.
- Also in today’s announcement is a Rackspace partnership to offer Clustrix remotely, at monthly pricing.
- Clustrix has been shipping product for about 4 years.
- Clustrix has 20 customers in production, running >125 Clustrix nodes total.
- Clustrix has 60 people.
- List price for a (smallest size) Clustrix system is $150K for 3 nodes. Highest-end maintenance costs 15%.
- There’s also a $100K version meant for high availability/disaster recovery. Over half of Clustrix’s customers use off-site disaster recovery.
- Clustrix is raising a C round. Part of it has already been raised from insiders, as a kind of bridge.
The biggest Clustrix installation seems to be 20 nodes or so. Others seem to have 10+. I presume those disaster recovery customers have 6 or more nodes each. I’m not quite sure how the arithmetic on that all works; perhaps the 125ish count of nodes is a bit low.
Clustrix technical notes include: Read more
Categories: Cloud computing, Clustering, Clustrix, Database compression, Market share and customer counts, MySQL, OLTP, Pricing, Structured documents | 4 Comments |
Memory-centric data management when locality matters
Ron Pressler of Parallel Universe/SpaceBase pinged me about a data grid product he was open sourcing, called Galaxy. The idea is that a distributed RAM grid will allocate data, not randomly or via consistent hashing, but rather via a locality-sensitive approach. Notes include:
- The original technology was developed to track moving objects on behalf of the Israeli Air Force.
- The commercial product is focused on MMO (Massively MultiPlayer Online) games (or virtual worlds).
- The underpinnings are being open sourced.
- Ron suggests that, among other use cases, Galaxy might work well for graphs.
- Ron argues that one benefit is that when lots of things cluster together — e.g. characters in a game — there’s a natural way to split them elastically (shrink the radius for proximity).
- The design philosophy seems to be to adapt as many ideas as possible from the way CPUs manage (multiple levels of) RAM cache.
The whole thing is discussed in considerable detail in a blog post and a especially in a Hacker News comment thread. There’s also an error-riddled TechCrunch article. Read more
Categories: Cache, Clustering, Games and virtual worlds, GIS and geospatial, Open source, RDF and graphs, Scientific research, Streaming and complex event processing (CEP) | 2 Comments |
Issues in regulatory compliance
From time to time, I hear of regulatory requirements to retain, analyze, and/or protect data in various ways. It’s hard to get a comprehensive picture of these, as they vary both by industry and jurisdiction; so I generally let such compliance issues slide. Still, perhaps I should use one post to pull together what is surely a very partial list.
Most such compliance requirements have one of two emphases: Either you need to keep your customers’ data safe against misuse, or else you’re supposed to supply information to government authorities. From a data management and analysis standpoint, the former area mainly boils down to:
- Information security. This can include access control, encryption, masking, auditing, and more.
- Keeping data in an approved geographical area. (E.g., its country of origin.) This seems to be one of the three big drivers for multi-data-center processing (along with latency and disaster recovery), and hence is an influence upon numerous users’ choices in areas such as clustering and replication.
The latter, however, has numerous aspects.
First, there are many purposes for the data retention and analysis, including but by no means limited to: Read more