Structured documents
Analysis of data management technology based on a structured-document model, or optimized for XML data. Related subjects include:
- Text data management
- Object-oriented database management
- Mark Logic
- IBM’s DB2 pureXML
- (in Text Technologies) More extensive coverage of text search
Introduction to SequoiaDB and SequoiaCM
For starters, let me say:
- SequoiaDB, the company, is my client.
- SequoiaDB, the product, is the main product of SequoiaDB, the company.
- SequoiaDB, the company, has another product line SequoiaCM, which subsumes SequoiaDB in content management use cases.
- SequoiaDB, the product, is fundamentally a JSON data store. But it has a relational front end …
- … and is usually sold for RDBMS-like use cases …
- … except when it is sold as part of SequoiaCM, which adds in a large object/block store and a content-management-oriented library.
- SequoiaDB’s products are open source.
- SequoiaDB’s largest installation seems to be 2 PB across 100 nodes; that includes block storage.
- Figures for DBMS-only database sizes aren’t as clear, but the sweet spot of the cluster-size range for such use cases seems to be 6-30 nodes.
Also:
- SequoiaDB, the company, was founded in Toronto, by former IBM DB2 folks.
- Even so, it’s fairly accurate to view SequoiaDB as a Chinese company. Specifically:
- SequoiaDB’s founders were Chinese nationals.
- Most of them went back to China.
- Other employees to date have been entirely Chinese.
- Sales to date have been entirely in China, but SequoiaDB has international aspirations
- SequoiaDB has >100 employees, a large majority of which are split fairly evenly between “engineering” and “implementation and technical support”.
- SequoiaDB’s marketing (as opposed to sales) department is astonishingly tiny.
- SequoiaDB cites >100 subscription customers, including 10 in the global Fortune 500, a large fraction of which are in the banking sector. (Other sectors mentioned repeatedly are government and telecom.)
Unfortunately, SequoiaDB has not captured a lot of detailed information about unpaid open source production usage.
Introduction to Crate.io and CrateDB
Crate.io and CrateDB basics include:
- Crate.io makes CrateDB.
- CrateDB is a quasi-RDBMS designed to receive sensor data and similar IoT (Internet of Things) inputs.
- CrateDB’s creators were perhaps a little slow to realize that the “R” part was needed, but are playing catch-up in that regard.
- Crate.io is an outfit founded by Austrian guys, headquartered in Berlin, that is turning into a San Francisco company.
- Crate.io says it has 22 employees and 5 paying customers.
- Crate.io cites bigger numbers than that for confirmed production users, clearly active clusters, and overall product downloads.
In essence, CrateDB is an open source and less mature alternative to MemSQL. The opportunity for MemSQL and CrateDB alike exists in part because analytic RDBMS vendors didn’t close it off.
CrateDB’s not-just-relational story starts:
- A column can contain ordinary values (of usual-suspect datatypes) or “objects”, …
- … where “objects” presumably are the kind of nested/hierarchical structures that are common in the NoSQL/internet-backend world, …
- … except when they’re just BLOBs (Binary Large OBjects).
- There’s a way to manually define “strict schemas” on the structured objects, and a syntax for navigating their structure in WHERE clauses.
- There’s also a way to automagically infer “dynamic schemas”, but it’s simplistic enough to be more suitable for development/prototyping than for serious production.
Categories: Columnar database management, Data models and architecture, Databricks, Spark and BDAS, GIS and geospatial, MemSQL, NoSQL, Open source, Structured documents | 3 Comments |
MongoDB 3.4 and “multimodel” query
“Multimodel” database management is a hot new concept these days, notwithstanding that it’s been around since at least the 1990s. My clients at MongoDB of course had to join the train as well, but they’ve taken a clear and interesting stance:
- A query layer with multiple ways to query and analyze data.
- A separate data storage layer in which you have a choice of data storage engines …
- … each of which has the same logical (JSON-based) data structure.
When I pointed out that it would make sense to call this “multimodel query” — because the storage isn’t “multimodel” at all — they quickly agreed.
To be clear: While there are multiple ways to read data in MongoDB, there’s still only one way to write it. Letting that sink in helps clear up confusion as to what about MongoDB is or isn’t “multimodel”. To spell that out a bit further: Read more
Categories: Database diversity, Emulation, transparency, portability, MongoDB, MySQL, NoSQL, Open source, RDF and graphs, Structured documents, Text | 4 Comments |
Readings in Database Systems
Mike Stonebraker and Larry Ellison have numerous things in common. If nothing else:
- They’re both titanic figures in the database industry.
- They both gave me testimonials on the home page of my business website.
- They both have been known to use the present tense when the future tense would be more accurate. 🙂
I mention the latter because there’s a new edition of Readings in Database Systems, aka the Red Book, available online, courtesy of Mike, Joe Hellerstein and Peter Bailis. Besides the recommended-reading academic papers themselves, there are 12 survey articles by the editors, and an occasional response where, for example, editors disagree. Whether or not one chooses to tackle the papers themselves — and I in fact have not dived into them — the commentary is of great interest.
But I would not take every word as the gospel truth, especially when academics describe what they see as commercial market realities. In particular, as per my quip in the first paragraph, the data warehouse market has not yet gone to the extremes that Mike suggests,* if indeed it ever will. And while Joe is close to correct when he says that the company Essbase was acquired by Oracle, what actually happened is that Arbor Software, which made Essbase, merged with Hyperion Software, and the latter was eventually indeed bought by the giant of Redwood Shores.**
*When it comes to data warehouse market assessment, Mike seems to often be ahead of the trend.
**Let me interrupt my tweaking of very smart people to confess that my own commentary on the Oracle/Hyperion deal was not, in retrospect, especially prescient.
Mike pretty much opened the discussion with a blistering attack against hierarchical data models such as JSON or XML. To a first approximation, his views might be summarized as: Read more
Couchbase 4.0 and related subjects
I last wrote about Couchbase in November, 2012, around the time of Couchbase 2.0. One of the many new features I mentioned then was secondary indexing. Ravi Mayuram just checked in to tell me about Couchbase 4.0. One of the important new features he mentioned was what I think he said was Couchbase’s “first version” of secondary indexing. Obviously, I’m confused.
Now that you’re duly warned, let me remind you of aspects of Couchbase timeline.
- 2 corporate name changes ago, Couchbase was organized to commercialize memcached. memcached, of course, was internet companies’ default way to scale out short-request processing before the rise of NoSQL, typically backed by manually sharded MySQL.
- Couchbase’s original value proposition, under the name Membase, was to provide persistence and of course support for memcached. This later grew into a caching-oriented pitch even to customers who weren’t already memcached users.
- A merger with the makers of CouchDB ensued, with the intention of replacing Membase’s SQLite back end with CouchDB at the same time as JSON support was introduced. This went badly.
- By now, however, Couchbase sells for more than distributed cache use cases. Ravi rattled off a variety of big-name customer examples for system-of-record kinds of use cases, especially in session logging (duh) and also in travel reservations.
- Couchbase 4.0 has been in beta for a few months.
Technical notes on Couchbase 4.0 — and related riffs 🙂 — start: Read more
MongoDB update
One pleasure in talking with my clients at MongoDB is that few things are NDA. So let’s start with some numbers:
- >2,000 named customers, the vast majority of which are unique organizations who do business with MongoDB directly.
- ~75,000 users of MongoDB Cloud Manager.
- Estimated ~1/4 million production users of MongoDB total.
Also >530 staff, and I think that number is a little out of date.
MongoDB lacks many capabilities RDBMS users take for granted. MongoDB 3.2, which I gather is slated for early November, narrows that gap, but only by a little. Features include:
- Some JOIN capabilities.
- Specifically, these are left outer joins, so they’re for lookup but not for filtering.
- JOINs are not restricted to specific shards of data …
- … but do benefit from data co-location when it occurs.
- A BI connector. Think of this as a MongoDB-to- SQL translator. Using this does require somebody to go in and map JSON schemas and relational tables to each other. Once that’s done, the flow is:
- Basic SQL comes in.
- Filters and GroupBys are pushed down to MongoDB. A result set … well, it results. 🙂
- The result set is formatted into a table and returned to the system — for example a business intelligence tool — that sent the SQL.
- Database-side document validation, in the form of field-specific rules that combine into a single expression against which to check a document.
- This is fairly simple stuff — no dependencies among fields in the same document, let alone foreign key relationships.
- MongoDB argues, persuasively, that this simplicity makes it unlikely to recreate the spaghetti code maintenance nightmare that was 1990s stored procedures.
- MongoDB concedes that, for performance, it will ordinarily be a good idea to still do your validation on the client side.
- MongoDB points out that enforcement can be either strict (throw errors) or relaxed (just note invalid documents to a log). The latter option is what makes it possible to install this feature without breaking your running system.
There’s also a closed-source database introspection tool coming, currently codenamed MongoDB Scout. Read more
Categories: Business intelligence, EAI, EII, ETL, ELT, ETLT, Market share and customer counts, MongoDB, NoSQL, Open source, Structured documents, Text | 6 Comments |
MemSQL 4.0
I talked with my clients at MemSQL about the release of MemSQL 4.0. Let’s start with the reminders:
- MemSQL started out as in-memory OTLP (OnLine Transaction Processing) DBMS …
- … but quickly positioned with “We also do ‘real-time’ analytic processing” …
- … and backed that up by adding a flash-based column store option …
- … before Gartner ever got around to popularizing the term HTAP (Hybrid Transaction and Analytic Processing).
- There’s also a JSON option.
The main new aspects of MemSQL 4.0 are:
- Geospatial indexing. This is for me the most interesting part.
- A new optimizer and, I suppose, query planner …
- … which in particular allow for serious distributed joins.
- Some rather parallel-sounding connectors to Spark. Hadoop and Amazon S3.
- Usual-suspect stuff including:
- More SQL coverage (I forgot to ask for details).
- Some added or enhanced administrative/tuning/whatever tools (again, I forgot to ask for details).
- Surely some general Bottleneck Whack-A-Mole.
There’s also a new free MemSQL “Community Edition”. MemSQL hopes you’ll experiment with this but not use it in production. And MemSQL pricing is now wholly based on RAM usage, so the column store is quasi-free from a licensing standpoint is as well.
BI for NoSQL — some very early comments
Over the past couple years, there have been various quick comments and vague press releases about “BI for NoSQL”. I’ve had trouble, however, imagining what it could amount to that was particularly interesting, with my confusion boiling down to “Just what are you aggregating over what?” Recently I raised the subject with a few leading NoSQL companies. The result is that my confusion was expanded. 🙂 Here’s the small amount that I have actually figured out.
As I noted in a recent post about data models, many databases — in particular SQL and NoSQL ones — can be viewed as collections of <name, value> pairs.
- In a relational database, a record is a collection of <name, value> pairs with a particular and predictable — i.e. derived from the table definition — sequence of names. Further, a record usually has an identifying key (commonly one of the first values).
- Something similar can be said about structured-document stores — i.e. JSON or XML — except that the sequence of names may not be consistent from one document to the next. Further, there’s commonly a hierarchical relationship among the names.
- For these purposes, a “wide-column” NoSQL store like Cassandra or HBase can be viewed much as a structured-document store, albeit with different performance optimizations and characteristics and a different flavor of DML (Data Manipulation Language).
Consequently, a NoSQL database can often be viewed as a table or a collection of tables, except that:
- The NoSQL database is likely to have more null values.
- The NoSQL database, in a naive translation toward relational, may have repeated values. So a less naive translation might require extra tables.
That’s all straightforward to deal with if you’re willing to write scripts to extract the NoSQL data and transform or aggregate it as needed. But things get tricky when you try to insist on some kind of point-and-click. And by the way, that last comment pertains to BI and ETL (Extract/Transform/Load) alike. Indeed, multiple people I talked with on this subject conflated BI and ETL, and they were probably right to do so.
Categories: Business intelligence, Cassandra, EAI, EII, ETL, ELT, ETLT, HBase, MongoDB, NoSQL, Structured documents | 6 Comments |
Data models
7-10 years ago, I repeatedly argued the viewpoints:
- Relational DBMS were the right choice in most cases.
- Multiple kinds of relational DBMS were needed, optimized for different kinds of use case.
- There were a variety of specialized use cases in which non-relational data models were best.
Since then, however:
- Hadoop has flourished.
- NoSQL has flourished.
- Graph DBMS have matured somewhat.
- Much of the action has shifted to machine-generated data, of which there are many kinds.
So it’s probably best to revisit all that in a somewhat organized way.
MongoDB 3.0
Old joke:
- Question: Why do policemen work in pairs?
- Answer: One to read and one to write.
A lot has happened in MongoDB technology over the past year. For starters:
- The big news in MongoDB 3.0* is the WiredTiger storage engine. The top-level claims for that are that one should “typically” expect (individual cases can of course vary greatly):
- 7-10X improvement in write performance.
- No change in read performance (which however was boosted in MongoDB 2.6).
- ~70% reduction in data size due to compression (disk only).
- ~50% reduction in index size due to compression (disk and memory both).
- MongoDB has been adding administration modules.
- A remote/cloud version came out with, if I understand correctly, MongoDB 2.6.
- An on-premise version came out with 3.0.
- They have similar features, but are expected to grow apart from each other over time. They have different names.
*Newly-released MongoDB 3.0 is what was previously going to be MongoDB 2.8. My clients at MongoDB finally decided to give a “bigger” release a new first-digit version number.
To forestall confusion, let me quickly add: Read more
Categories: Database compression, Hadoop, Humor, In-memory DBMS, MongoDB, NoSQL, Open source, Structured documents, Sybase | 9 Comments |