Schema on need
Discussion and analysis of support for what we call the schema-on-need feature.
JSON in Teradata
I coined the term schema-on-need last month. More precisely, I coined it while being briefed on JSON-in-Teradata, which was announced earlier this week, and is slated for availability in the first half of 2014.
The basic JSON-in-Teradata story is as you expect:
- A JSON document is stuck into a relational field.
(Oddly, Teradata wasn’t yet sure whether the field would be a BLOB or VARCHAR or something else.)Edit: See Dan Graham’s comment below. - Fields within the JSON document can be indexed on.
- Those fields can be referenced in SQL statements much as regular Teradata columns can.
You have to retrieve the whole document.Edit: See Dan Graham’s comment below.- To avert the performance pain of retrieving the whole document, you can of course copy any particular field into a column of its own. (That’s the schema-on-need part of the story.)
JSON virtual columns are referenced a little differently than ordinary physical columns are. Thus, if you materialize a virtual column, you have to change your SQL. If you’re doing business intelligence through a semantic layer, or otherwise have some kind of declarative translation, that’s probably not a big drawback. If you’re coding analytic procedures directly, it still may not be a big drawback — hopefully you won’t reference the virtual column too many times in code before you decide to materialize it instead.
My Bobby McFerrin* imitation notwithstanding, Hadapt illustrates a schema-on-need approach that is slicker than Teradata’s in two ways. First, Hadapt has full SQL transparency between virtual and physical columns. Second, Hadapt handles not just JSON, but anything represented by key-value pairs. Still, like XML before it but more concisely, JSON is a pretty versatile data interchange format. So JSON-in-Teradata would seem to be useful as it stands.
*The singer in the classic 1988 music video Don’t Worry Be Happy. The other two performers, of course, were Elton John and Robin Williams.
Categories: Data models and architecture, Data warehousing, Hadapt, Schema on need, Structured documents, Teradata | 3 Comments |
Schema-on-need
Two years ago I wrote about how Zynga managed analytic data:
Data is divided into two parts. One part has a pretty ordinary schema; the other is just stored as a huge list of name-value pairs. (This is much like eBay‘s approach with its Teradata-based Singularity, except that eBay puts the name-value pairs into long character strings.) … Zynga adds data into the real schema when it’s clear it will be needed for a while.
What was then the province of a few huge web companies is now poised to be a broader trend. Specifically:
- Relational DBMS are adding or enhancing their support for complex datatypes, to accommodate various kinds of machine-generated data.
- MongoDB-compatible JSON is the flavor of the day on the short-request side, but alternatives include other JSON, XML, other key-value, or text strings.
- It is often possible to index on individual attributes inside the complex datatype.
- The individual attributes inside the complex datatypes amount to virtual columns, which can play similar roles in SQL statements as physical columns do.
- Over time, the DBA may choose to materialize virtual columns as additional physical columns, to boost query performance.
That migration from virtual to physical columns is what I’m calling “schema-on-need”. Thus, schema-on-need is what you invoke when schema-on-read no longer gets the job done. 😉