Petabyte-scale data management
Posts about database management for databases with petabytes of user data.
The Hemisphere program
Another surveillance slide deck has emerged, as reported by the New York Times and other media outlets. This one is for the Hemisphere program, which apparently:
- Stores CDRs (Call Detail Records), many or all of which are collected via …
- … some kind of back door into the AT&T switches that many carriers use. (See Slide 2.)
- Has also included “subscriber information” for AT&T phones since July, 2012.
- Contains “long distance and international” CDRs back to 1987.
- Currently adds 4 billion CDRs per day.
- Is administered by a Federal drug-related law enforcement agency but …
- … is used to combat many non-drug-related crimes as well. (See Slides 21-26.)
Other notes include:
- The agencies specifically mentioned on Slide 16 as making numerous Hemisphere requests are the DEA (Drug Enforcement Agency) and DHS (Department of Homeland Security).
- “Roaming” data giving city/state is mentioned in the deck, but more precise geo-targeting is not.
I’ve never gotten a single consistent figure, but typical CDR size seems to be in the 100s of bytes range. So I conjecture that Project Hemisphere spawned one of the first petabyte-scale databases ever.
Hemisphere Project unknowns start: Read more
Categories: Data warehousing, GIS and geospatial, Petabyte-scale data management, Specific users, Surveillance and privacy, Telecommunications | Leave a Comment |
Hortonworks business notes
Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes from my call — for which Rob Bearden didn’t bother showing up — include, in no particular order:
- Hortonworks denies advanced acquisition discussions with either Microsoft and Intel. Of course, that doesn’t exactly contradict the widespread story of Intel having made an acquisition offer. Edit: I have subsequently heard, very credibly, that the denial was untrue.
- As vendors usually do, Hortonworks denies the extreme forms of Cloudera’s suggestion that Hortonworks competitive wins relate to price slashing. But Hortonworks does believe that its license fees often wind up being lower than Cloudera’s, due especially to Hortonworks offering few extra-charge items than Cloudera.
- Hortonworks used a figure of ~75 subscription customers. Edit: That figure turns out in retrospect to have been inflated. This does not include OEM sales through, for example, Teradata, Microsoft Azure, or Rackspace. However, that does include …
- … a small number of installations hosted in the cloud — e.g. ~2 on Amazon Web Services — or otherwise remotely. Also, testing in the cloud seems to be fairly frequent, and the cloud can also be a source of data ingested into Hadoop.
- Since Hortonworks a couple of times made it seem that Rackspace was an important partner, behind only Teradata and Microsoft, I finally asked why. Answers boiled down to a Rackspace Hadoop-as-a-service offering, plus joint work to improve Hadoop-on-OpenStack.
- Other Hortonworks reseller partners seem more important in terms of helping customers consume HDP (Hortonworks Data Platform), rather than for actually doing Hortonworks’ selling for it. (This is unsurprising — channel sales rarely are a path to success for a product that is also appropriately sold by a direct force.)
- Hortonworks listed its major industry sectors as:
- Web and retailing, which it identifies as one thing.
- Media.
- Telecommunications.
- Health care (various subsectors).
- Financial services, which it called “competitive” in the kind of tone that usually signifies “we lose a lot more than we win, and would love to change that”.
In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social. Read more
Hortonworks, Hadoop, Stinger and Hive
I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger — but at my request we cycled through a bunch of other topics as well. Company-specific notes include:
- Hortonworks founder J. Eric “Eric14” Baldeschwieler is no longer at Hortonworks, although I imagine he stays closely in touch. What he’s doing next is unspecified, except by the general phrase “his own thing”. (Derrick Harris has more on Eric’s departure.)
- John Kreisa still is at Hortonworks, just not as marketing VP. Think instead of partnerships and projects.
- ~250 employees.
- ~70-75 subscription customers.
Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:
- 10ish nodes for a typical starting cluster.
- 100ish nodes for a typical “data lake” committed adoption.
- Teradata UDA (Unified Data Architecture)* customers sometimes (typically?) jumping straight to a data lake scenario.
- A few users in the 10s of 1000s of nodes. (Obviously Yahoo is one.)
- HBase used in >50% of installations.
- Hive probably even more than that.
- Hortonworks is seeing a fair amount of interest in Windows Hadoop deployments.
*By the way — Teradata seems serious about pushing the UDA as a core message.
Ecosystem notes, in Hortonworks’ perception, included:
- Cloudera is obviously Hortonworks’ biggest distro competitor. Next is IBM, presumably in its blue-forever installed base. MapR is barely on the radar screen; Pivotal’s likely rise hasn’t yet hit sales reports.
- Hortonworks evidently sees a lot of MicroStrategy and Tableau, and some Platfora and Datameer, the latter two at around the same level of interest.
- Accumulo is a big deal in the Federal government, and has gotten a few health care wins as well. Its success is all about security. (Note: That’s all consistent with what I hear elsewhere.)
I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.
Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:
- It’s been in preview/release candidate/commercial beta mode for weeks.
- Q3 is the goal; H2 is the emphatic goal.
- Yahoo’s been in production with YARN >8 months, and has no MapReduce 1 clusters left. (Yahoo has >35,000 Hadoop nodes.)
- The last months of delays have been mainly about sprucing up various APIs and protocols, which may need to serve for a similar multi-year period as Hadoop 1’s have. But there also was some YARN stabilization into May.
Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.
Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include: Read more
Notes and comments, July 2, 2013
I’m not having a productive week, part of the reason being a hard drive crash that took out early drafts of what were to be last weekend’s blog posts. Now I’m operating from a laptop, rather than my preferred dual-monitor set-up. So please pardon me if I’m concise even by comparison to my usual standards.
- My recent posts based on surveillance news have been partly superseded by – well, by more news. Some of that news, along with some good discussion, may be found in the comment threads.
- The same goes for my recent Hadoop posts.
- The replay for my recent webinar on real-time analytics is now available. My part ran <25 minutes.
- One of my numerous clients using or considering a “real-time analytics” positioning is Sqrrl, the company behind the NoSQL DBMS Accumulo. Last month, Derrick Harris reported on a remarkable Accumulo success story – multiple US intelligence instances managing 10s of petabytes each, and supporting a variety of analytic (I think mainly query/visualization) approaches.
- Several sources have told me that MemSQL’s Zynga sale is (in part) for Membase replacement. This is noteworthy because Zynga was the original pay-for-some-of-the-development Membase customer.
- More generally, the buzz out of Couchbase is distressing. Ex-employees berate the place; job-seekers check around and then decide not to go there; rivals tell me of resumes coming out in droves. Yes, there’s always some of that, even at obviously prospering companies, but this feels like more than the inevitable low-level buzz one hears anywhere.
- I think the predictive modeling state of the art has become:
- Cluster in some way.
- Model separately on each cluster.
- And if you still want to do something that looks like a regression – linear or otherwise – then you might want to use a tool that lets you shovel training data in WITHOUT a whole lot of preparation* and receive a model back out. Even if you don’t accept that as your final model, it can at least be a great guide to feature selection (in the statistical sense of the phrase) and the like.
- Champion/challenger model testing is also a good idea, at least if you’re in some kind of personalization/recommendation space, and have enough traffic to test like that.**
- Most companies have significant turnover after being acquired, perhaps after a “golden handcuff” period. Vertica is no longer an exception.
- Speaking of my clients at HP Vertica – they’ve done a questionable job of communicating that they’re willing to price their product quite reasonably. (But at least they allowed me to write about $2K/terabyte for hardware/software combined.)
- I’m hearing a little more Amazon Redshift buzz than I expected to. Just a little.
- StreamBase was bought by TIBCO. The rumor says $40 million.
*Basic and unavoidable ETL (Extract/Transform/Load) of course excepted.
**I could call that ABC (Always Be Comparing) or ABT (Always Be Testing), but they each sound like – well, like The Glove and the Lions.
Where things stand in US government surveillance
Edit: Please see the comment thread below for updates. Please also see a follow-on post about how the surveillance data is actually used.
US government surveillance has exploded into public consciousness since last Thursday. With one major exception, the news has just confirmed what was already thought or known. So where do we stand?
My views about domestic data collection start:
- I’ve long believed that the Feds — specifically the NSA (National Security Agency) — are storing metadata/traffic data on every telephone call and email in the US. The recent news, for example Senator Feinstein’s responses to the Verizon disclosure, just confirms it. That the Feds sometimes claim this has to be “foreign” data or they won’t look at it hardly undermines my opinion.
- Even private enterprises can more or less straightforwardly buy information about every credit card purchase we make. So of course the Feds can get that as well, as the Wall Street Journal seems to have noticed. More generally, I’d assume the Feds have all the financial data they want, via the IRS if nothing else.
- Similarly, many kinds of social media postings are aggregated for anybody to purchase, or can be scraped by anybody who invests in the equipment and bandwidth. Attensity’s service is just one example.
- I’m guessing that web use data (http requests, search terms, etc.) is not yet routinely harvested by the US government.* Ditto deanonymization of same. I guess that way basically because I’ve heard few rumblings to the contrary. Further, the consumer psychographic profiles that are so valuable to online retailers might be of little help to national security analysts anyway.
- Video surveillance seems likely to grow, from fixed cameras perhaps to drones; note for example the various officials who called for more public cameras after that Boston Marathon bombing. But for the present discussion, that’s of lesser concern to me, simply because it’s done less secretively than other kinds of surveillance. If there’s a camera that can see us, often we can see it too.
*Recall that these comments are US-specific. Data retention legislation has been proposed or passed in multiple countries to require recording of, among other things, all URL requests, with the stated goal of fighting either digital piracy or child pornography.
As for foreign data: Read more
Categories: Hadoop, HP and Neoview, Petabyte-scale data management, Pricing, Surveillance and privacy, Telecommunications, Text, Vertica Systems, Web analytics | 10 Comments |
Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations
To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.
Gartner seems confused about Kognitio’s products and history alike.
- Gartner calls Kognitio an “in-memory” DBMS, which is not accurate.
- Gartner doesn’t remark on Kognitio’s worst-in-class* compression.
- Gartner gives Kognitio oddly high marks for a late, me-too Hadoop integration strategy.
- Gartner writes as if Kognitio’s next attempt at the US market will be the first one, which is not the case.
- Gartner says that Kognitio pioneered data warehouse SaaS (Software as a Service), which actually has existed since the pre-relational 1970s.
Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.
* non-existent
In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more
Notes, links and comments August 6, 2012
I haven’t done a notes/link/comments post for a while. Time for a little catch-up.
1. MySQL now has a memcached integration story. I haven’t checked the details. The MySQL team is pretty hard to talk with, due to the heavy-handedness of Oracle’s analyst relations.
2. The Large Hadron Collider offers some serious numbers, including:
- 1 petabyte/second.
- 6 x 109 collisions/second.
- Only 1 in 1013 collision records kept (which I guess knocks things down to a 100 byte/second average, from the standpoint of persistent storage).
- Real-time filtering by a cluster of several thousand machines, over a 25 nanosecond period.
3. One application area we don’t talk about much for analytic technologies is education. However: Read more
Categories: Cache, memcached, Memory-centric data management, MySQL, Open source, Petabyte-scale data management, RDF and graphs, Scientific research | Leave a Comment |
Introduction to Yarcdata
Cray’s strategy these days seems to be:
- Move forward with the classic supercomputer business.
- Diversify into related areas.
At the moment, the main diversifications are:
- Boxes that are like supercomputers, but at a lower price point.
- Storage.
- “(Big) data”.
The last of the three is what Cray subsidiary Yarcdata is all about. Read more
Notes on the Hadoop and HBase markets
I visited my clients at Cloudera and Hortonworks last week, along with scads of other companies. A few of the takeaways were:
- Cloudera now has 220 employees.
- Cloudera now has over 100 subscription customers.
- Over the past year, Cloudera has more than doubled in size by every reasonable metric.
- Over half of Cloudera’s customers use HBase, vs. a figure of 18+ last July.
- Omer Trajman — who by the way has made a long-overdue official move into technical marketing — can no longer keep count of how many petabyte-scale Hadoop clusters Cloudera supports.
- Cloudera gets the majority of its revenue from subscriptions. However, professional services and training continue to be big businesses too.
- Cloudera has trained over 12,000 people.
- Hortonworks is training people too.
- Hortonworks now has 70 employees, and plans to have 100 or so by the end of this quarter.
- A number of those Hortonworks employees are executives who come from seriously profit-oriented backgrounds. Hortonworks clearly has capitalist intentions.
- Hortonworks thinks a typical enterprise Hadoop cluster has 20-50 nodes, with 50-100 already being on the large side.
- There are huge amounts of Elastic MapReduce/Hadoop processing in the Amazon cloud. Some estimates say it’s the majority of all Amazon Web Services processing.
- I met with 4 young-company clients who I regard as building vertical analytic stacks (WibiData, MarketShare, MetaMarkets, and ClearStory). All 4 are heavily dependent on Hadoop. (The same isn’t as true of older companies who built out a lot of technology before Hadoop was invented.)
- There should be more HBase information at HBaseCon on May 22.
- If MapR still has momentum, nobody I talked with has noticed.
Commercial software for academic use
As Jacek Becla explained:
- Academic scientists like their software to be open source, for reasons that include both free-like-speech and free-like-beer.
- What’s more, they like their software to be dead-simple to administer and use, since they often lack the dedicated human resources for anything else.
Even so, I think that academic researchers, in the natural and social sciences alike, commonly overlook the wealth of commercial software that could help them in their efforts.
I further think that the commercial software industry could do a better job of exposing its work to academics, where by “expose” I mean:
- Give your stuff to academics for free.
- Call their attention to your free offering.
Reasons to do so include:
- Public benefit. Scientific research is important.
- Training future customers. There’s huge academic/commercial crossover, especially as students join the for-profit workforce.