Theory and architecture

Analysis of design choices in databases and database management systems. Related subjects include:

January 10, 2015

Migration

There is much confusion about migration, by which I mean applications or investment being moved from one “platform” technology — hardware, operating system, DBMS, Hadoop, appliance, cluster, cloud, etc. — to another. Let’s sort some of that out. For starters:

I mixed together true migration and new-app platforms in a post last year about DBMS architecture choices, when I wrote: Read more

December 31, 2014

Notes on machine-generated data, year-end 2014

Most IT innovation these days is focused on machine-generated data (sometimes just called “machine data”), rather than human-generated. So as I find myself in the mood for another survey post, I can’t think of any better idea for a unifying theme.

1. There are many kinds of machine-generated data. Important categories include:

That’s far from a complete list, but if you think about those categories you’ll probably capture most of the issues surrounding other kinds of machine-generated data as well.

2. Technology for better information and analysis is also technology for privacy intrusion. Public awareness of privacy issues is focused in a few areas, mainly: Read more

November 30, 2014

Thoughts and notes, Thanksgiving weekend 2014

I’m taking a few weeks defocused from work, as a kind of grandpaternity leave. That said, the venue for my Dances of Infant Calming is a small-but-nice apartment in San Francisco, so a certain amount of thinking about tech industries is inevitable. I even found time last Tuesday to meet or speak with my clients at WibiData, MemSQL, Cloudera, Citus Data, and MongoDB. And thus:

1. I’ve been sloppy in my terminology around “geo-distribution”, in that I don’t always make it easy to distinguish between:

The latter case can be subdivided further depending on whether multiple copies of the data can accept first writes (aka active-active, multi-master, or multi-active), or whether there’s a clear single master for each part of the database.

What made me think of this was a phone call with MongoDB in which I learned that the limit on number of replicas had been raised from 12 to 50, to support the full-replication/latency-reduction use case.

2. Three years ago I posted about agile (predictive) analytics. One of the points was:

… if you change your offers, prices, ad placement, ad text, ad appearance, call center scripts, or anything else, you immediately gain new information that isn’t well-reflected in your previous models.

Subsequently I’ve been hearing more about predictive experimentation such as bandit testing. WibiData, whose views are influenced by a couple of Very Famous Department Store clients (one of which is Macy’s), thinks experimentation is quite important. And it could be argued that experimentation is one of the simplest and most direct ways to increase the value of your data.

3. I’d further say that a number of developments, trends or possibilities I’m seeing are or could be connected. These include agile and experimental predictive analytics in general, as noted in the previous point, along with:  Read more

October 22, 2014

Snowflake Computing

I talked with the Snowflake Computing guys Friday. For starters:

Much of the Snowflake story can be summarized as cloud/elastic/simple/cheap.*

*Excuse me — inexpensive. Companies rarely like their products to be labeled as “cheap”.

In addition to its purely relational functionality, Snowflake accepts poly-structured data. Notes on that start:

I don’t know enough details to judge whether I’d call that an example of schema-on-need.

A key element of Snowflake’s poly-structured data story seems to be lateral views. I’m not too clear on that concept, but I gather: Read more

September 28, 2014

Some stuff on my mind, September 28, 2014

1. I wish I had some good, practical ideas about how to make a political difference around privacy and surveillance. Nothing else we discuss here is remotely as important. I presumably can contribute an opinion piece to, more or less, the technology publication(s) of my choice; that can have a small bit of impact. But I’d love to do better than that. Ideas, anybody?

2. A few thoughts on cloud, colocation, etc.:

3. As for the analytic DBMS industry: Read more

September 7, 2014

An idealized log management and analysis system — from whom?

I’ve talked with many companies recently that believe they are:

At best, I think such competitive claims are overwrought. Still, it’s a genuinely important subject and opportunity, so let’s consider what a great log management and analysis system might look like.

Much of this discussion could apply to machine-generated data in general. But right now I think more players are doing product management with an explicit conception either of log management or event-series analytics, so for this post I’ll share that focus too.

A short answer might be “Splunk, but with more analytic functionality and more scalable performance, at lower cost, plus numerous coupons for free pizza.” A more constructive and bottoms-up approach might start with:  Read more

August 7, 2014

Actian Vector Hadoop Edition

I have a small blacklist of companies I won’t talk with because of their particularly unethical past behavior. Actian is one such; they evidently made stuff up about me that Josh Berkus gullibly posted for them, and I don’t want to have conversations that could be dishonestly used against me.

That said, Peter Boncz isn’t exactly an Actian employee. Rather, he’s the professor who supervised Marcin Zukowski’s PhD thesis that became Vectorwise, and I chatted with Peter by Skype while he was at home in Amsterdam. I believe his assurances that no Actian personnel sat in on the call. 🙂

In other news, Peter is currently working on and optimistic about HyPer. But we literally spent less than a minute talking about that

Before I get to the substance, there’s been a lot of renaming at Actian. To quote Andrew Brust,

… the ParAccel, Pervasive and Vectorwise technologies are being unified under the Actian Analytics Platform brand. Specifically, the ParAccel technology … is being re-branded Actian Matrix; Pervasive’s technologies are rechristened Actian DataFlow and Actian DataConnect; and Vectorwise becomes Actian Vector.

and

Actian … is now “one company, with one voice and one platform” according to its John Santaferraro

The bolded part of the latter quote is untrue — at least in the ordinary sense of the word “one” — but the rest can presumably be taken as company gospel.

All this is by way of preamble to saying that Peter reached out to me about Actian’s new Vector Hadoop Edition when he blogged about it last June, and we finally talked this week. Highlights include:  Read more

July 23, 2014

Teradata bought Hadapt and Revelytix

My client Teradata bought my (former) clients Revelytix and Hadapt.* Obviously, I’m in confidentiality up to my eyeballs. That said — Teradata truly doesn’t know what it’s going to do with those acquisitions yet. Indeed, the acquisitions are too new for Teradata to have fully reviewed the code and so on, let alone made strategic decisions informed by that review. So while this is just a guess, I conjecture Teradata won’t say anything concrete until at least September, although I do expect some kind of stated direction in time for its October user conference.

*I love my business, but it does have one distressing aspect, namely the combination of subscription pricing and customer churn. When your customers transform really quickly, or even go out of existence, so sometimes does their reliance on you.

I’ve written extensively about Hadapt, but to review:

As for what Teradata should do with Hadapt: Read more

July 15, 2014

The point of predicate pushdown

Oracle is announcing today what it’s calling “Oracle Big Data SQL”. As usual, I haven’t been briefed, but highlights seem to include:

And by the way — Oracle Big Data SQL is NOT “SQL-on-Hadoop” as that term is commonly construed, unless the complete Oracle DBMS is running on every node of a Hadoop cluster.

Predicate pushdown is actually a simple concept:

“Predicate pushdown” gets its name from the fact that portions of SQL statements, specifically ones that filter data, are properly referred to as predicates. They earn that name because predicates in mathematical logic and clauses in SQL are the same kind of thing — statements that, upon evaluation, can be TRUE or FALSE for different values of variables or data.

The most famous example of predicate pushdown is Oracle Exadata, with the story there being:

Oracle evidently calls this “SmartScan”, and says Oracle Big Data SQL does something similar with predicate pushdown into Hadoop.

Oracle also hints at using predicate pushdown to do non-tabular operations on the non-relational systems, rather than shoehorning operations on multi-structured data into the Oracle DBMS, but my details on that are sparse.

Related link

July 14, 2014

21st Century DBMS success and failure

As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.

DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.

In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.

Buyer inertia is a greater concern.

A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.

Otherwise I’d say:  Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.