Theory and architecture

Analysis of design choices in databases and database management systems. Related subjects include:

July 27, 2011

MongoDB users and use cases

I spoke with Eliot Horowitz and Max Schierson of 10gen last month about MongoDB users and use cases. The biggest clusters they came up with weren’t much over 100 nodes, but clusters an order of magnitude bigger were under development. The 100 node one we talked the most about had 33 replica sets, each with about 100 gigabytes of data, so that’s in the 3-4 terabyte range total. In general, the largest MongoDB databases are 20-30 TB; I’d guess those really do use the bulk of available disk space.   Read more

July 18, 2011

HBase is not broken

It turns out that my impression that HBase is broken was unfounded, in at least two ways. The smaller is that something wrong with the HBase/Hadoop interface or Hadoop’s HBase support cannot necessarily be said to be wrong with HBase (especially since HBase is no longer a Hadoop subproject). The bigger reason is that, according to consensus, HBase has worked pretty well since the .90 release in January of this year.

After Michael Stack of StumbleUpon beat me up for a while,* Omer Trajman of Cloudera was kind enough to walk me through HBase usage. He is informed largely by 18 Cloudera customers, plus a handful of other well-known HBase users such as Facebook, StumbleUpon, and Yahoo. Of the 18 Cloudera customers using HBase that Omer was thinking of, 15 are in HBase production, one is in HBase “early production”, one is still doing R&D in the area of HBase, and one is a classified government customer not providing such details. Read more

July 15, 2011

Soundbites: the Facebook/MySQL/NoSQL/VoltDB/Stonebraker flap, continued

As a follow-up to the latest Stonebraker kerfuffle, Derrick Harris asked me a bunch of smart followup questions. My responses and afterthoughts include:

Continuing with that discussion of DBMS alternatives:

And while we’re at it — going schema-free often makes a whole lot of sense. I need to write much more about the point, but for now let’s just say that I look favorably on the Big Four schema-free/NoSQL options of MongoDB, Couchbase, HBase, and Cassandra.

July 14, 2011

An odd claim attributed to Mike Stonebraker

This post has a sequel.

Last week, Mike Stonebraker insulted MySQL and Facebook’s use of it, by implication advocating VoltDB instead. Kerfuffle ensued. To the extent Mike was saying that non-transparently sharded MySQL isn’t an ideal way to do things, he’s surely right. That still leaves a lot of options for massive short-request databases, however, including transparently sharded RDBMS, scale-out in-memory DBMS (whether or not VoltDB*), and various NoSQL options. If nothing else, Couchbase would seem superior to memcached/non-transparent MySQL if you were starting a project today.

*The big problem with VoltDB, last I checked, was its reliance on Java stored procedures to get work done.

Pleasantries continued in The Register, which got an amazing-sounding quote from Mike. If The Reg is to be believed — something I wouldn’t necessarily take for granted — Mike claimed that he (i.e. VoltDB) knows how to solve the distributed join performance problem.  Read more

July 7, 2011

Sybase IQ soundbites

Sybase made a total hash of the timing of this week’s press release. I got annoyed after they promised to inform me of the new embargo time, then broke the promise. Other people got annoyed earlier than that.

So be it. Below is the draft of a post I was holding, with brackets added around one word that is no longer accurate.

I don’t write enough about Sybase IQ. That said, I offered a couple of quotes to a reporter [yesterday] in connection with the general availability of Sybase IQ 15.3. Lightly edited, they go:

Beyond that, I should note:

July 6, 2011

Hadapt update

I met with the Hadapt guys today.  I think I can be a bit crisper than before in positioning Hadapt and its use cases, namely:

Other evolution from what I wrote about Hadapt a few months ago includes:

In other news, Hadapt is our newest client.

July 6, 2011

Petabyte-scale Hadoop clusters (dozens of them)

I recently learned that there are 7 Vertica clusters with a petabyte (or more) each of user data. So I asked around about other petabyte-scale clusters. It turns out that there are several dozen such clusters (at least) running Hadoop.

Cloudera can identify 22 CDH (Cloudera Distribution [of] Hadoop) clusters holding one petabyte or more of user data each, at 16 different organizations. This does not count Facebook or Yahoo, who are huge Hadoop users but not, I gather, running CDH. Meanwhile, Eric Baldeschwieler of Hortonworks tells me that Yahoo’s latest stated figures are:

Read more

July 6, 2011

Hadoop hardware and compression

A month ago, I posted about typical Hadoop hardware. After talking today with Eric Baldeschwieler of Hortonworks, I have an update. I also learned some things from Eric and from Brian Christian of Zettaset about Hadoop compression.

First the compression part. Eric thinks 6-10X compression is common for “curated” Hadoop data — i.e., the data that actually gets used a lot. Brian used an overall figure of 6-8X, and told of a specific customer who had 6X or a little more. By way of comparison, it sounds as if the kinds of data involved are like what Vertica claimed 10-60X compression for almost three years ago.

Eric also made an excellent point about low-value machine-generated data. I was suggesting that as Moore’s Law made sensor networks ever more affordable:  Read more

July 5, 2011

Eight kinds of analytic database (Part 2)

In Part 1 of this two-part series, I outlined four variants on the traditional enterprise data warehouse/data mart dichotomy, and suggested what kinds of DBMS products you might use for each. In Part 2 I’ll cover four more kinds of analytic database — even newer, for the most part, with a use case/product short list match that is even less clear.  Read more

July 5, 2011

Eight kinds of analytic database (Part 1)

Analytic data management technology has blossomed, leading to many questions along the lines of “So which products should I use for which category of problem?” The old EDW/data mart dichotomy is hopelessly outdated for that purpose, and adding a third category for “big data” is little help.

Let’s try eight categories instead. While no categorization is ever perfect, these each have at least some degree of technical homogeneity. Figuring out which types of analytic database you have or need — and in most cases you’ll need several — is a great early step in your analytic technology planning.  Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.