Theory and architecture
Analysis of design choices in databases and database management systems. Related subjects include:
- Any subcategory
- Database diversity
- Explicit support for specific data types
- (in Text Technologies) Text search
More on Actian/ParAccel/VectorWise/Versant/etc.
My quick reaction to the Actian/ParAccel deal was negative. A few challenges to my views then emerged. They didn’t really change my mind.
Amazon Redshift
Amazon did a deal with ParAccel that amounted to:
- Amazon got a very cheap license to a limited subset of ParAccel’s product …
- … so that it could launch a service called Amazon Redshift.
- Amazon also invested in ParAccel.
Some argue that this is great for ParAccel’s future prospects. I’m not convinced.
No doubt there are and will be Redshift users, evidently including Infor. But so far as I can tell, Redshift uses very standard SQL, so it doesn’t seed a ParAccel market in terms of developer habits. The administration/operation story is similar. So outside of general validation/bragging rights, Redshift is not a big deal for ParAccel.
OEMs and bragging rights
It’s not just Amazon and Infor; there’s also a MicroStrategy deal to OEM ParAccel — I think it’s the real ParAccel software in that case — for a particular service, MicroStrategy Wisdom. But unless I’m terribly mistaken, HP Vertica, Sybase IQ and even Infobright each have a lot more OEMs than ParAccel, just as they have a lot more customers than ParAccel overall.
This OEM success is a great validation for the idea of columnar analytic RDBMS in general, but I don’t see where it’s an advantage for ParAccel vs. the columnar leaders. Read more
Categories: Actian and Ingres, Amazon and its cloud, Columnar database management, HP and Neoview, Market share and customer counts, ParAccel, Sybase, VectorWise, Vertica Systems | 7 Comments |
Goodbye VectorWise, farewell ParAccel?
Actian, which already owns VectorWise, is also buying ParAccel. The argument for why this kills VectorWise is simple. ParAccel does most things VectorWise does, more or less as well. It also does a lot more:
- ParAccel scales out.
- ParAccel has added analytic platform capabilities.
- I don’t know for sure, but I’d guess ParAccel has more mature management/plumbing capabilities as well.
One might conjecture that ParAccel is bad at highly concurrent, single-node use cases, and VectorWise is better at them — but at the link above, ParAccel bragged of supporting 5,000 concurrent connections. Besides, if one is just looking for a high-use reporting server, why not get Sybase IQ?? Anyhow, Actian hasn’t been investing enough in VectorWise to make it a major market player, and they’re unlikely to start now that they own ParAccel as well.
But I expect ParAccel to fail too. Reasons include:
- ParAccel’s small market share and traction.
- The disruption of any acquisition like this one.
- My general view of Actian as a company.
Categories: Actian and Ingres, Columnar database management, Data warehousing, HP and Neoview, ParAccel, Sybase, VectorWise, Vertica Systems | 10 Comments |
MemSQL scales out
The third of my three MySQL-oriented clients I alluded to yesterday is MemSQL. When I wrote about MemSQL last June, the product was an in-memory single-server MySQL workalike. Now scale-out has been added, with general availability today.
MemSQL’s flagship reference is Zynga, across 100s of servers. Beyond that, the company claims (to quote a late draft of the press release):
Enterprises are already using distributed MemSQL in production for operational analytics, network security, real-time recommendations, and risk management.
All four of those use cases fit MemSQL’s positioning in “real-time analytics”. Besides Zynga, MemSQL cites penetration into traditional low-latency markets — financial services (various subsectors) and ad-tech.
Highlights of MemSQL’s new distributed architecture start: Read more
Teradata SQL-H
As vendors so often do, Teradata has caused itself some naming confusion. SQL-H was introduced as a facility of Teradata Aster, to complement SQL-MR.* But while SQL-MR is in essence a set of SQL extensions, SQL-H is not. Rather, SQL-H is a transparency interface that makes Hadoop data responsive to the same code that would work on Teradata Aster …
*Speaking of confusion — Teradata Aster seems to use the spellings SQL/MR and SQL-MR interchangeably.
… except that now there’s also a SQL-H for regular Teradata systems as well. While it has the same general features and benefits as SQL-H for Teradata Aster, the details are different, since the underlying systems are.
I hope that’s clear. 🙂
Categories: Data integration and middleware, Data warehousing, Emulation, transparency, portability, Hadoop, SQL/Hadoop integration, Teradata | 2 Comments |
Introduction to Deep Information Sciences and DeepDB
I talked Friday with Deep Information Sciences, makers of DeepDB. Much like TokuDB — albeit with different technical strategies — DeepDB is a single-server DBMS in the form of a MySQL engine, whose technology is concentrated around writing indexes quickly. That said:
- DeepDB’s indexes can help you with analytic queries; hence, DeepDB is marketed as supporting OLTP (OnLine Transaction Processing) and analytics in the same system.
- DeepDB is marketed as “designed for big data and the cloud”, with reference to “Volume, Velocity, and Variety”. What I could discern in support of that is mainly:
- DeepDB has been tested at up to 3 terabytes at customer sites and up to 1 billion rows internally.
- Like most other NewSQL and NoSQL DBMS, DeepDB is append-only, and hence could be said to “stream” data to disk.
- DeepDB’s indexes could at some point in the future be made to work well with non-tabular data.*
- The Deep guys have plans and designs for scale-out — transparent sharding and so on.
*For reasons that do not seem closely related to product reality, DeepDB is marketed as if it supports “unstructured” data today.
Other NewSQL DBMS seem “designed for big data and the cloud” to at least the same extent DeepDB is. However, if we’re interpreting “big data” to include multi-structured data support — well, only half or so of the NewSQL products and companies I know of share Deep’s interest in branching out. In particular:
- Akiban definitely does. (Note: Stay tuned for some next-steps company news about Akiban.)
- Tokutek has planted a small stake there too.
- Key-value-store-backed NuoDB and GenieDB probably leans that way. (And SanDisk evidently shut down Schooner’s RDBMS while keeping its key-value store.)
- VoltDB, Clustrix, ScaleDB and MemSQL seem more strictly tabular, except insofar as text search is a requirement for everybody. (Edit: Oops; I forgot about Clustrix’s approach to JSON support.)
Edit: MySQL has some sort of an optional NoSQL interface, and hence so presumably do MySQL-compatible TokuDB, GenieDB, Clustrix, and MemSQL.
Also, some of those products do not today have the transparent scale-out that Deep plans to offer in the future.
Some notes on new-era data management, March 31, 2013
Hmm. I probably should have broken this out as three posts rather than one after all. Sorry about that.
Performance confusion
Discussions of DBMS performance are always odd, for starters because:
- Workloads and use cases vary greatly.
- In particular, benchmarks such as the YCSB or TPC-H aren’t very helpful.
But in NoSQL/NewSQL short-request processing performance claims seem particularly confused. Reasons include but are not limited to:
- It’s common for databases or at least working sets to be entirely in RAM — but it’s not always required.
- Consistency and durability models vary. What’s more, in some systems — e.g. MongoDB — there’s considerable flexibility as to which model you use.
- In particular, there’s an increasingly common choice in which data is written synchronously to RAM on 2 or more servers, then asynchronously to disk on each of them. Performance in these cases can be quite different from when all writes need to be committed to disk. Of course, you need sufficient disk I/O to keep up, so SSDs (Solid-State Drives) can come in handy.
- Many workloads are inherently single node (replication aside). Others are not.
MongoDB and 10gen
I caught up with Ron Avnur at 10gen. Technical highlights included: Read more
Platfora at the time of first GA
Well-resourced Silicon Valley start-ups typically announce their existence multiple times. Company formation, angel funding, Series A funding, Series B funding, company launch, product beta, and product general availability may not be 7 different “news events”, but they’re apt to be at least 3-4. Platfora, no exception to this rule, is hitting general availability today, and in connection with that I learned a bit more about what they are up to.
In simplest terms, Platfora offers exploratory business intelligence against Hadoop-based data. As per last weekend’s post about exploratory BI, a key requirement is speed; and so far as I can tell, any technological innovation Platfora offers relates to the need for speed. Specifically, I drilled into Platfora’s performance architecture on the query processing side (and associated data movement); Platfora also brags of rendering 100s of 1000s of “marks” quickly in HTML5 visualizations, but I haven’t a clue as to whether that’s much of an accomplishment in itself.
Platfora’s marketing suggests it obviates the need for a data warehouse at all; for most enterprises, of course, that is a great exaggeration. But another dubious aspect of Platfora marketing actually serves to understate the product’s merits — Platfora claims to have an “in-memory” product, when what’s really the case is that Platfora’s memory-centric technology uses both RAM and disk to manage larger data marts than could reasonably be fit into RAM alone. Expanding on what I wrote about Platfora when it de-stealthed: Read more
Appliances, clusters and clouds
I believe:
- The trend to clustered computing is sustainable.
- The trend to appliances is also sustainable.
- The “single” enterprise cluster is almost as much of a pipe dream as the single enterprise database.
I shall explain.
Arguments for hosting applications on some kind of cluster include:
- If the workload requires more than one server — well, you’re in cluster territory!
- If the workload requires less than one server — throw it into the virtualization pool.
- If the workload is uneven — throw it into the virtualization pool.
Arguments specific to the public cloud include:
- A large fraction of new third-party applications are SaaS (Software as a Service). Those naturally live in the cloud.
- Cloud providers have efficiencies that you don’t.
That’s all pretty compelling. However, these are not persuasive reasons to put everything on a SINGLE cluster or cloud. They could as easily lead you to have your VMware cluster and your Exadata rack and your Hadoop cluster and your NoSQL cluster and your object storage OpenStack cluster — among others — all while participating in several different public clouds as well.
Why would you not move work into a cluster at all? First, if ain’t broken, you might not want to fix it. Some of the cluster options make it easy for you to consolidate existing workloads — that’s a central goal of VMware and Exadata — but others only make sense to adopt in connection with new application projects. Second, you might just want device locality. I have a gaming-class PC next to my desk; it drives a couple of monitors; I like that arrangement. Away from home I carry a laptop computer instead. Arguments can be made for small remote-office servers as well.
Categories: Cloud computing, Clustering, Data warehouse appliances, Exadata, NoSQL, Software as a Service (SaaS) | 8 Comments |
DBMS development and other subjects
The cardinal rules of DBMS development
Rule 1: Developing a good DBMS requires 5-7 years and tens of millions of dollars.
That’s if things go extremely well.
Rule 2: You aren’t an exception to Rule 1.
In particular:
- Concurrent workloads benchmarked in the lab are poor predictors of concurrent performance in real life.
- Mixed workload management is harder than you’re assuming it is.
- Those minor edge cases in which your Version 1 product works poorly aren’t minor after all.
DBMS with Hadoop underpinnings …
… aren’t exceptions to the cardinal rules of DBMS development. That applies to Impala (Cloudera), Stinger (Hortonworks), and Hadapt, among others. Fortunately, the relevant vendors seem to be well aware of this fact. Read more
Hadoop execution enhancements
Hadoop 2.0/YARN is the first big step in evolving Hadoop beyond a strict Map/Reduce paradigm, in that it at least allows for the possibility of non- or beyond-MapReduce processing engines. While YARN didn’t meet its target of general availability around year-end 2012, Arun Murthy of Hortonworks told me recently that:
- Yahoo is a big YARN user.
- There are other — paying — YARN users.
- YARN general availability is now targeted for well before the end of 2013.
Arun further told me about Tez, the next-generation Hadoop processing engine he’s working on, which he also discussed in a recent blog post:
With the emergence of Apache Hadoop YARN as the basis of next generation data-processing architectures, there is a strong need for an application which can execute a complex DAG [Directed Acyclic Graph] of tasks which can then be shared by Apache Pig, Apache Hive, Cascading and others. The constrained DAG expressible in MapReduce (one set of maps followed by one set of reduces) often results in multiple MapReduce jobs which harm latency for short queries (overhead of launching multiple jobs) and throughput for large-scale queries (too much overhead for materializing intermediate job outputs to the filesystem). With Tez, we introduce a more expressive DAG of tasks, within a single application or job, that is better aligned with the required processing task – thus, for e.g., any given SQL query can be expressed as a single job using Tez.
This is similar to the approach of BDAS Spark:
Rather than being restricted to Maps and Reduces, Spark has more numerous primitive operations, including map, reduce, sample, join, and group-by. You can do these more or less in any order.
although Tez won’t match Spark’s richer list of primitive operations.
More specifically, there will be six primitive Tez operations:
- HDFS (Hadoop Distributed File System) input and output.
- Sorting on input and output (I’m not sure why that’s two operations rather than one).
- Shuffling of input and output (ditto).
A Map step would compound HDFS input, output sorting, and output shuffling; a Reduce step compounds — you guessed it! — input sorting, input shuffling, and HDFS output.
I can’t think of much in the way of algorithms that would be logically impossible in MapReduce yet possible in Tez. Rather, the main point of Tez seems to be performance, performance consistency, response-time consistency, and all that good stuff. Specific advantages that Arun and I talked about included:
- The requirement for materializing (onto disk) intermediate results that you don’t want to is gone. (Yay!)
- Hadoop jobs will step on each other’s toes less. Instead of Maps and Reduces from unrelated jobs getting interleaved, all the operations from a single job will by default be executed in one chunk. (Even so, I see no reason to expect early releases of Tez to do a great job on highly concurrent mixed workload management.)
- Added granularity brings opportunities for additional performance enhancements, for example in the area of sorting. (Arun loves sorts.)
Categories: Databricks, Spark and BDAS, Hadoop, Hortonworks, MapReduce, Workload management, Yahoo | 14 Comments |