Theory and architecture

Analysis of design choices in databases and database management systems. Related subjects include:

July 20, 2013

The refactoring of everything

I’ll start with three observations:

As written, that’s probably pretty obvious. Even so, it’s easy to forget just how pervasive the refactoring is and is likely to be. Let’s survey some examples first, and then speculate about consequences. Read more

July 2, 2013

Notes and comments, July 2, 2013

I’m not having a productive week, part of the reason being a hard drive crash that took out early drafts of what were to be last weekend’s blog posts. Now I’m operating from a laptop, rather than my preferred dual-monitor set-up. So please pardon me if I’m concise even by comparison to my usual standards.

*Basic and unavoidable ETL (Extract/Transform/Load) of course excepted.

**I could call that ABC (Always Be Comparing) or ABT (Always Be Testing), but they each sound like – well, like The Glove and the Lions.

June 23, 2013

Impala and Parquet

I visited Cloudera Friday for, among other things, a chat about Impala with Marcel Kornacker and colleagues. Highlights included:

Data gets into Parquet via batch jobs only — one reason it’s important that Impala run against multiple file formats — but background format conversion is another roadmap item. A single table can be split across multiple formats — e.g., the freshest data could be in HBase, with the rest is in Parquet.

Read more

June 10, 2013

Where things stand in US government surveillance

Edit: Please see the comment thread below for updates. Please also see a follow-on post about how the surveillance data is actually used.

US government surveillance has exploded into public consciousness since last Thursday. With one major exception, the news has just confirmed what was already thought or known. So where do we stand?

My views about domestic data collection start:

*Recall that these comments are US-specific. Data retention legislation has been proposed or passed in multiple countries to require recording of, among other things, all URL requests, with the stated goal of fighting either digital piracy or child pornography.

As for foreign data: Read more

June 6, 2013

Dave DeWitt responds to Daniel Abadi

A few days ago I posted Daniel Abadi’s thoughts in a discussion of Hadapt, Microsoft PDW (Parallel Data Warehouse)/PolyBase, Pivotal/Greenplum Hawq, and other SQL-Hadoop combinations. This is Dave DeWitt’s response. Emphasis mine.

Read more

June 2, 2013

SQL-Hadoop architectures compared

The genesis of this post is:

I love my life.

Per Daniel (emphasis mine): Read more

June 2, 2013

WibiData and its Kiji technology

My clients at WibiData:

Yeah, I like these guys. 🙂

If you’re building an application that “obviously” calls for a NoSQL database, and which has a strong predictive modeling aspect, then WibiData has thought more cleverly about what you need than most vendors I can think of. More precisely, WibiData has thought cleverly about your data management, movement, crunching, serving, and integration. For pure modeling sophistication, you should look elsewhere — but WibiData will gladly integrate with or execute those models for you.

WibiData’s enabling technology, now called Kiji, is a collection of modules, libraries, and so on — think Spring — running over Hadoop/HBase. Except for some newfound modularity, it is much like what I described at the time of WibiData’s launch or what WibiData further disclosed a few months later. Key aspects include:

Read more

May 27, 2013

IBM BLU

I had a good chat with IBM about IBM BLU, aka BLU Accelerator or Acceleration. BLU basics start:

And yes — that means Oracle is now the only major relational DBMS vendor left without a true columnar story.

BLU’s maturity and scalability basics start:

BLU technical highlights include: Read more

May 27, 2013

Data skipping

Way back in 2006, I wrote about a cool Netezza feature called the zone map, which in essence allows you to do partition elimination even in the absence of strict range partitioning.

Netezza’s substitute for range partitioning is very simple. Netezza features “zone maps,” which note the minimum and maximum of each column value (if such concepts are meaningful) in each extent. This can amount to effective range partitioning over dates; if data is added over time, there’s a good chance that the data in any particular date range is clustered, and a zone map lets you pick out which data falls in the desired data range.

I further wrote

… that seems to be the primary scenario in which zone maps confer a large benefit.

But I now think that part was too pessimistic. For example, in bulk load scenarios, it’s easy to imagine ways in which data can be clustered or skewed. And in such cases, zone maps can let you skip a large fraction of potential I/O.

Over the years I’ve said that other things were reminiscent of Netezza zone maps, e.g. features of Infobright, SenSage, InfiniDB and even Microsoft SQL Server. But truth be told, when I actually use the phrase “zone map”, people usually give me a blank look.

In a recent briefing about BLU, IBM introduced me to a better term — data skipping. I like it and, unless somebody comes up with a good reason not to, I plan to start using it myself. 🙂

May 20, 2013

Some stuff I’m working on

1. I have some posts up on Strategic Messaging. The most recent are overviews of messaging, pricing, and positioning.

2. Numerous vendors are blending SQL and JSON management in their short-request DBMS. It will take some more work for me to have a strong opinion about the merits/demerits of various alternatives.

The default implementation — one example would be Clustrix’s — is to stick the JSON into something like a BLOB/CLOB field (Binary/Character Large Object), index on individual values, and treat those indexes just like any others for the purpose of SQL statements. Drawbacks include:

IBM DB2 is one recent arrival to the JSON party. Unfortunately, I forgot to ask whether IBM’s JSON implementation was based on IBM DB2 pureXML when I had the chance, and IBM hasn’t gotten around to answering my followup query.

3. Nor has IBM gotten around to answering my followup queries on the subject of BLU, an interesting-sounding columnar option for DB2.

4. Numerous clients have asked me whether they should be active in DBaaS (DataBase as a Service). After all, Amazon, Google, Microsoft, Rackspace and salesforce.com are all in that business in some form, and other big companies have dipped toes in as well. Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.