NoSQL
Discussion of NoSQL concepts, products, and vendors.
Imanis Data
I talked recently with the folks at Imanis Data. For starters:
- The point of Imanis is to make copies of your databases, for purposes such as backup/restore, test/analysis, or compliance-driven archiving. (That’s in declining order of current customer activity.) Another use is migration via restoring to a different cluster than the one that created the data in the first place.
- The data can come from NoSQL database managers, from Hadoop, or from Vertica. (Again, that’s in declining order.)
- As you might imagine, Imanis makes incremental backups; the only full backup is the first one you do for that database.
- “Imanis” is a new name; the previous name was “Talena”.
Categories: Cassandra, Hadoop, Market share and customer counts, NoSQL, Predictive modeling and advanced analytics, Vertica Systems | 1 Comment |
Analytics on the edge?
There’s a theory going around to the effect that:
- Compute power is and will be everywhere, for example in cars, robots, medical devices or microwave ovens. Let’s refer to these platforms collectively as “real-world appliances”.
- Much more data will be created on these platforms than can reasonably be sent back to centralized/cloudy servers.
- Therefore, cloud-centric architectures will soon be obsolete, perhaps before they’re ever dominant in the first place.
There’s enough truth to all that to make it worth discussing. But the strong forms of the claims seem overblown.
1. This story doesn’t even make sense except for certain new classes of application. Traditional business applications run all over the world, in dedicated or SaaSy modes as the case may be. E-commerce is huge. So is content delivery. Architectures for all those things will continue to evolve, but what we have now basically works.
2. When it comes to real-world appliances, this story is partially accurate. An automobile is a rolling network of custom Linux systems, each running hand-crafted real-time apps, a few of which also have minor requirements for remote connectivity. That’s OK as far as it goes, but there could be better support for real-time operational analytics. If something as flexible as Spark were capable of unattended operation, I think many engineers of real-world appliances would find great ways to use it.
3. There’s a case to be made for something better yet. I think the argument is premature, but it’s worth at least a little consideration. Read more
Generally available Kudu
I talked with Cloudera about Kudu in early May. Besides giving me a lot of information about Kudu, Cloudera also helped confirm some trends I’m seeing elsewhere, including:
- Security is an ever bigger deal.
- There’s a lot of interest in data warehouses (perhaps really data marts) that are updated in human real-time.
- Prospects for that respond well to the actual term “data warehouse”, at least when preceded by some modifier to suggest that it’s modern/low-latency/non-batch or whatever.
- Flash is often — but not yet always — preferred over disk for that kind of use.
- Sometimes these data stores are greenfield. When they’re migrations, they come more commonly from analytic RDBMS or data warehouse appliance (the most commonly mentioned ones are Teradata, Netezza and Vertica, but that’s perhaps just due to those product lines’ market share), rather than from general purpose DBMS such as Oracle or SQL Server.
- Intel is making it ever easier to vectorize CPU operations, and analytic data managers are increasingly taking advantage of this possibility.
Now let’s talk about Kudu itself. As I discussed at length in September 2015, Kudu is:
- A data storage system introduced by Cloudera (and subsequently open-sourced).
- Columnar.
- Updatable in human real-time.
- Meant to serve as the data storage tier for Impala and Spark.
Kudu’s adoption and roll-out story starts: Read more
Introduction to SequoiaDB and SequoiaCM
For starters, let me say:
- SequoiaDB, the company, is my client.
- SequoiaDB, the product, is the main product of SequoiaDB, the company.
- SequoiaDB, the company, has another product line SequoiaCM, which subsumes SequoiaDB in content management use cases.
- SequoiaDB, the product, is fundamentally a JSON data store. But it has a relational front end …
- … and is usually sold for RDBMS-like use cases …
- … except when it is sold as part of SequoiaCM, which adds in a large object/block store and a content-management-oriented library.
- SequoiaDB’s products are open source.
- SequoiaDB’s largest installation seems to be 2 PB across 100 nodes; that includes block storage.
- Figures for DBMS-only database sizes aren’t as clear, but the sweet spot of the cluster-size range for such use cases seems to be 6-30 nodes.
Also:
- SequoiaDB, the company, was founded in Toronto, by former IBM DB2 folks.
- Even so, it’s fairly accurate to view SequoiaDB as a Chinese company. Specifically:
- SequoiaDB’s founders were Chinese nationals.
- Most of them went back to China.
- Other employees to date have been entirely Chinese.
- Sales to date have been entirely in China, but SequoiaDB has international aspirations
- SequoiaDB has >100 employees, a large majority of which are split fairly evenly between “engineering” and “implementation and technical support”.
- SequoiaDB’s marketing (as opposed to sales) department is astonishingly tiny.
- SequoiaDB cites >100 subscription customers, including 10 in the global Fortune 500, a large fraction of which are in the banking sector. (Other sectors mentioned repeatedly are government and telecom.)
Unfortunately, SequoiaDB has not captured a lot of detailed information about unpaid open source production usage.
Introduction to Crate.io and CrateDB
Crate.io and CrateDB basics include:
- Crate.io makes CrateDB.
- CrateDB is a quasi-RDBMS designed to receive sensor data and similar IoT (Internet of Things) inputs.
- CrateDB’s creators were perhaps a little slow to realize that the “R” part was needed, but are playing catch-up in that regard.
- Crate.io is an outfit founded by Austrian guys, headquartered in Berlin, that is turning into a San Francisco company.
- Crate.io says it has 22 employees and 5 paying customers.
- Crate.io cites bigger numbers than that for confirmed production users, clearly active clusters, and overall product downloads.
In essence, CrateDB is an open source and less mature alternative to MemSQL. The opportunity for MemSQL and CrateDB alike exists in part because analytic RDBMS vendors didn’t close it off.
CrateDB’s not-just-relational story starts:
- A column can contain ordinary values (of usual-suspect datatypes) or “objects”, …
- … where “objects” presumably are the kind of nested/hierarchical structures that are common in the NoSQL/internet-backend world, …
- … except when they’re just BLOBs (Binary Large OBjects).
- There’s a way to manually define “strict schemas” on the structured objects, and a syntax for navigating their structure in WHERE clauses.
- There’s also a way to automagically infer “dynamic schemas”, but it’s simplistic enough to be more suitable for development/prototyping than for serious production.
Categories: Columnar database management, Data models and architecture, Databricks, Spark and BDAS, GIS and geospatial, MemSQL, NoSQL, Open source, Structured documents | 3 Comments |
DBAs of the future
After a July visit to DataStax, I wrote
The idea that NoSQL does away with DBAs (DataBase Administrators) is common. It also turns out to be wrong. DBAs basically do two things.
- Handle the database design part of application development. In NoSQL environments, this part of the job is indeed largely refactored away. More precisely, it is integrated into the general app developer/architect role.
- Manage production databases. This part of the DBA job is, if anything, a bigger deal in the NoSQL world than in more mature and automated relational environments. It’s likely to be called part of “devops” rather than “DBA”, but by whatever name it’s very much a thing.
That turns out to understate the core point, which is that DBAs still matter in non-RDBMS environments. Specifically, it’s too narrow in two ways.
- First, it’s generally too narrow as to what DBAs do; people with DBA-like skills are also involved in other areas such as “data governance”, “information lifecycle management”, storage, or what I like to call data mustering.
- Second — and more narrowly 🙂 — the first bullet point of the quote is actually incorrect. In fact, the database design part of application development can be done by a specialized person up front in the NoSQL world, just as it commonly is for RDBMS apps.
My wake-up call for that latter bit was a recent MongoDB 3.4 briefing. MongoDB certainly has various efforts in administrative tools, which I won’t recapitulate here. But to my surprise, MongoDB also found a role for something resembling relational database design. The idea is simple: A database administrator defines a view against a MongoDB database, where views: Read more
Categories: Databricks, Spark and BDAS, Hadoop, MongoDB, NoSQL, Streaming and complex event processing (CEP) | Leave a Comment |
MongoDB 3.4 and “multimodel” query
“Multimodel” database management is a hot new concept these days, notwithstanding that it’s been around since at least the 1990s. My clients at MongoDB of course had to join the train as well, but they’ve taken a clear and interesting stance:
- A query layer with multiple ways to query and analyze data.
- A separate data storage layer in which you have a choice of data storage engines …
- … each of which has the same logical (JSON-based) data structure.
When I pointed out that it would make sense to call this “multimodel query” — because the storage isn’t “multimodel” at all — they quickly agreed.
To be clear: While there are multiple ways to read data in MongoDB, there’s still only one way to write it. Letting that sink in helps clear up confusion as to what about MongoDB is or isn’t “multimodel”. To spell that out a bit further: Read more
Categories: Database diversity, Emulation, transparency, portability, MongoDB, MySQL, NoSQL, Open source, RDF and graphs, Structured documents, Text | 4 Comments |
Notes on the transition to the cloud
1. The cloud is super-hot. Duh. And so, like any hot buzzword, “cloud” means different things to different marketers. Four of the biggest things that have been called “cloud” are:
- The Amazon cloud, Microsoft Azure, and their competitors, aka public cloud.
- Software as a service, aka SaaS.
- Co-location in off-premises data centers, aka colo.
- On-premises clusters (truly on-prem or colo as the case may be) designed to run a broad variety of applications, aka private cloud.
Further, there’s always the idea of hybrid cloud, in which a vendor peddles private cloud systems (usually appliances) running similar technology stacks to what they run in their proprietary public clouds. A number of vendors have backed away from such stories, but a few are still pushing it, including Oracle and Microsoft.
This is a good example of Monash’s Laws of Commercial Semantics.
2. Due to economies of scale, only a few companies should operate their own data centers, aka true on-prem(ises). The rest should use some combination of colo, SaaS, and public cloud.
This fact now seems to be widely understood.
“Real-time” is getting real
I’ve been an analyst for 35 years, and debates about “real-time” technology have run through my whole career. Some of those debates are by now pretty much settled. In particular:
- Yes, interactive computer response is crucial.
- Into the 1980s, many apps were batch-only. Demand for such apps dried up.
- Business intelligence should occur at interactive speeds, which is a major reason that there’s a market for high-performance analytic RDBMS.
- Theoretical arguments about “true” real-time vs. near-real-time are often pointless.
- What matters in most cases is human users’ perceptions of speed.
- Most of the exceptions to that rule occur when machines race other machines, for example in automated bidding (high frequency trading or otherwise) or in network security.
A big issue that does remain open is: How fresh does data need to be? My preferred summary answer is: As fresh as is needed to support the best decision-making. I think that formulation starts with several advantages:
- It respects the obvious point that different use cases require different levels of data freshness.
- It cautions against people who think they need fresh information but aren’t in a position to use it. (Such users have driven much bogus “real-time” demand in the past.)
- It covers cases of both human and automated decision-making.
Straightforward applications of this principle include: Read more
Notes on DataStax and Cassandra
I visited DataStax on my recent trip. That was a tipping point leading to my recent discussions of NoSQL DBAs and misplaced fear of vendor lock-in. But of course I also learned some things about DataStax and Cassandra themselves.
On the customer side:
- DataStax customers still overwhelmingly use Cassandra for internet back-ends — web, mobile or otherwise as the case might be.
- This includes — and “includes” might be understating the point — traditional enterprises worried about competition from internet-only ventures.
Customers in large numbers want cloud capabilities, as a potential future if not a current need.
One customer example was a large retailer, who in the past was awful at providing accurate inventory information online, but now uses Cassandra for that. DataStax brags that its queries come back in 20 milliseconds, but that strikes me as a bit beside the point; what really matters is that data accuracy has gone from “batch” to some version of real-time. Also, Microsoft is a DataStax customer, using Cassandra (and Spark) for the Office 365 backend, or at least for the associated analytics.
Per Patrick McFadin, the four biggest things in DataStax Enterprise 5 are: Read more
Categories: Cassandra, DataStax, Microsoft and SQL*Server, NoSQL, Specific users | 2 Comments |