DBMS product categories
Analysis of database management technology in specific product categories. Related subjects include:
Columnar DBMS vendor customer metrics
Last April, I asked some columnar DBMS vendors to share customer metrics. They answered, but it took until now to iron out a couple of details. Overall, the answers are pretty impressive. Read more
Infobright 4.0
Infobright is announcing its 4.0 release, with imminent availability. In marketing and product alike, Infobright is betting the farm on machine-generated data. This hasn’t been Infobright’s strategy from the getgo, but it is these days, with pretty good focus and commitment. While some fraction of Infobright’s customer base is in the Sybase-IQ-like data mart market — and indeed Infobright put out a customer-win press release in that market a few days ago — Infobright’s current customer targets seem to be mainly:
- Web companies, many of which are already MySQL users.
- Telecommunication and similar log data, especially in OEM relationships.
- Trading/financial services, especially at mid-tier companies.
Key aspects of Infobright 4.0 include: Read more
Categories: Data warehousing, Database compression, Infobright, Investment research and trading, Log analysis, Open source, Telecommunications, Web analytics | 8 Comments |
Why you would want an appliance — and when you wouldn’t
Data warehouse appliances are booming. But Hadoop appliances are a non-starter.
Data warehouse and other data management appliances are on the upswing. Oracle is pushing Exadata. Teradata* is going strong, and also recently bought Aster Data. IBM bought Netezza. Greenplum and Vertica were bought by EMC and HP respectively. All those moves are favorable for appliances.
*As far as I’m concerned, all Teradata hardware-included systems are appliances.
In essence, there are two kinds of reasons to prefer appliances over software-only offerings: Read more
Categories: Data warehouse appliances, Hadoop, Open source | 10 Comments |
Traditional databases will eventually wind up in RAM
In January, 2010, I posited that it might be helpful to view data as being divided into three categories:
- Human/Tabular data –i.e., human-generated data that fits well into relational tables or arrays.
- Human/Nontabular data — i.e., all other data generated by humans.
- Machine-Generated data.
I won’t now stand by every nuance in that post, which may differ slightly from those in my more recent posts about machine-generated data and poly-structured databases. But one general idea is hard to dispute:
Traditional database data — records of human transactional activity, referred to as “Human/Tabular data above” — will not grow as fast as Moore’s Law makes computer chips cheaper.
And that point has a straightforward corollary, namely:
It will become ever more affordable to put traditional database data entirely into RAM. Read more
Object-oriented database management systems (OODBMS)
There seems to be a fair amount of confusion about object-oriented database management systems (OODBMS). Let’s start with a working definition:
An object-oriented database management system (OODBMS, but sometimes just called “object database”) is a DBMS that stores data in a logical model that is closely aligned with an application program’s object model. Of course, an OODBMS will have a physical data model optimized for the kinds of logical data model it expects.
If you’re guessing from that definition that there can be difficulties drawing boundaries between the application, the application programming language, the data manipulation language, and/or the DBMS — you’re right. Those difficulties have been a big factor in relegating OODBMS to being a relatively niche technology to date.
Examples of what I would call OODBMS include: Read more
Categories: Cache, In-memory DBMS, Intersystems and Cache', Memory-centric data management, Objectivity and Infinite Graph, OLTP, Software as a Service (SaaS), Starcounter | 20 Comments |
Starcounter high-speed memory-centric object-oriented DBMS, coming soon
Since posting recently about Starcounter, I’ve had the chance to actually talk with the company (twice). Hence I know more than before. 🙂 Starcounter:
- Has been around as a company since 2006.
- Has developed memory-centric object-oriented DBMS technology that has been OEMed by a few application software companies (especially in bricks-and-mortar retailing and in online advertising).
- Is planning to actually launch an OODBMS product sometime this summer.
- Has 14 employees (most or all of whom are in Sweden, which is also where I think Starcounter’s current customers are centered).
- Is planning to shift emphasis soon to the US market.
Starcounter’s value propositions are programming ease (no object/relational impedance mismatch) and performance. Starcounter believes its DBMS has 100X the performance of conventional DBMS at short-request transaction processing, and 10X the performance of other memory-centric and/or object-oriented DBMS (e.g. Oracle TimesTen, or Versant). That said, Starcounter has not yet tested VoltDB. Starcounter does not claim performance much beyond that of disk-based DBMS on analytic tasks such as aggregations.
The key technical aspect to Starcounter is integration between the DBMS and the virtual machine, so that the same copy of the data is accessed by both the DBMS and the application program, without any movement or transformation being needed. (Starcounter isn’t aware of any other object-oriented DBMS that work this way.) Transient and persistent data are handled in the same way, seamlessly.
Other Starcounter technical highlights include: Read more
Categories: Data models and architecture, In-memory DBMS, Memory-centric data management, Object, OLTP, Starcounter, Theory and architecture | 3 Comments |
Alternatives for Hadoop/MapReduce data storage and management
There’s been a flurry of announcements recently in the Hadoop world. Much of it has been concentrated on Hadoop data storage and management. This is understandable, since HDFS (Hadoop Distributed File System) is quite a young (i.e. immature) system, with much strengthening and Bottleneck Whack-A-Mole remaining in its future.
Known HDFS and Hadoop data storage and management issues include but are not limited to:
- Hadoop is run by a master node, and specifically a namenode, that’s a single point of failure.
- HDFS compression could be better.
- HDFS likes to store three copies of everything, whereas many DBMS and file systems are satisfied with two.
- Hive (the canonical way to do SQL joins and so on in Hadoop) is slow.
Different entities have different ideas about how such deficiencies should be addressed. Read more
Categories: Aster Data, Cassandra, Cloudera, Data warehouse appliances, DataStax, EMC, Greenplum, Hadapt, Hadoop, IBM and DB2, MapReduce, MongoDB, Netezza, Parallelization | 22 Comments |
DB2 OLTP scale-out: pureScale
Tim Vincent of IBM talked me through DB2 pureScale Monday. IBM DB2 pureScale is a kind of shared-disk scale-out parallel OTLP DBMS, with some interesting twists. IBM’s scalability claims for pureScale, on a 90% read/10% write workload, include:
- 95% scalability up to 64 machines
- 90% scalability up to 88 machines
- 89% scalability up to 112 machines
- 84% scalability up to 128 machines
More precisely, those are counts of cluster “members,” but the recommended configuration is one member per operating system instance — i.e. one member per machine — for reasons of availability. In an 80% read/20% write workload, scalability is less — perhaps 90% scalability over 16 members.
Several elements are of IBM’s DB2 pureScale architecture are pretty straightforward:
- There are multiple pureScale members (machines), each with its own instance of DB2.
- There’s an RDMA (Remote Direct Memory Access) interconnect, perhaps InfiniBand. (The point of InfiniBand and other RDMA is that moving data doesn’t require interrupts, and hence doesn’t cost many CPU cycles.)
- The DB2 pureScale members share access to the database on a disk array.
- Each DB2 pureScale member has its own log, also on the disk array.
Something called GPFS (Global Parallel File System), which comes bundled with DB2, sits underneath all this. It’s all based on the mainframe technology IBM Parallel Sysplex.
The weirdest part (to me) of DB2 pureScale is something called the Global Cluster Facility, which runs on its own set of boxes. (Edit: Actually, see Tim Vincent’s comment below.) Read more
Categories: Cache, Clustering, IBM and DB2, OLTP, Oracle | 15 Comments |
Oracle and Exadata: Business and technical notes
Last Friday I stopped by Oracle for my first conversation since January, 2010, in this case for a chat with Andy Mendelsohn, Mark Townsend, Tim Shetler, and George Lumpkin, covering Exadata and the Oracle DBMS. Key points included: Read more
In-memory, parallel, not-in-database SAS HPA does make sense after all
I talked with SAS about its new approach to parallel modeling. The two key points are:
- SAS no longer plans to go as far with in-database modeling as it previously intended.
- Rather, SAS plans to run in RAM on MPP DBMS appliances, exploiting MPI (Message Passing Interface).
The whole thing is called SAS HPA (High-Performance Analytics), in an obvious reference to HPC (High-Performance Computing). It will run initially on RAM-heavy appliances from Teradata and EMC Greenplum.
A lot of what’s going on here is that SAS found it annoyingly difficult to parallelize modeling within the framework of a massively parallel DBMS such as Teradata. Notes on that aspect include:
- SAS wasn’t exploiting the capabilities of individual DBMS to their fullest; rather, it was looking for an approach that would work across multiple brands of DBMS. Thus, for example, the fact that Aster’s analytic platform architecture is more flexible or powerful than Teradata’s didn’t help much with making SAS run within the Aster nCluster database.
- Notwithstanding everything else, SAS did make a certain set of modeling procedures run in-database.
- SAS’ previous plans to run in-database modeling in Aster and/or Netezza DBMS may never come to fruition.