OLTP
Analysis of database management systems designed with a focus on OTLP (OnLine Transaction Processing) uses.
DB2 Express-C
IBM announced the freeware version of DB2 today. I’ll post links to the details later, but I want to highlight a couple of interesting implications:
1. They define the cutoff between the free and paid version not by how big a database you can manage on disk, but rather by how much RAM the software can address. This supports my thesis that effective use of RAM is crucial to DBMS performance, and is corollary — specially optimized memory-centric data management products deserve a place in most large enterprises’ product portfolios.
2. Having a free version of DB2 lets one play with whatever features DB2 may have that simply aren’t available in other DBMS, to see if they’re worth using. And the most significant such feature, in my opinion, is native XML storage. Whatever else this product does or doesn’t accomplish, it may serve to speed adoption of IBM’s native XML server technology.
Categories: IBM and DB2, Memory-centric data management, Mid-range, OLTP, Structured documents | Leave a Comment |
Finally a column on XML storage
After several months of headfakes, I finally did a column on XML storage this month. There turned out to be room for application discussion, but not for much technical nitty-gritty.
The app discussion is pretty consistent with what I’d already posted here, although I wish I’d gone into more detail on the inventory database example. (Stay tuned for followup here!)
I also intend to post soon with some technical detail about how XML storage is actually handled.
I also got some good insight from Marklogic about what customers wanted in their text-centric markets. More on that soon too.
And by the way — I didn’t pick the Oracle-bashing title. I also didn’t pick the Oracle-bashing title for my Network World “Hot Seat” video. But somehow, the Oracle-doubting parts of my views are of special interest to my friends in the media. And it’s not as if the titles say anything I actually disagree with …
Categories: OLTP, Oracle, Structured documents | 3 Comments |
Another OLTP success for memory-centric OO
Computerworld published a Progress ObjectStore OLTP success story.
Hotel reservations system, this time. Not as impressive as the Amazon store — what is? — but still nice.
Categories: Cache, Memory-centric data management, Object, OLTP, Progress, Apama, and DataDirect, Theory and architecture | 5 Comments |
SAP’s version of DBMS2
I just spent a couple of days at SAP’s analyst meeting, and realized something I’d somewhat forgotten – much of the DBMS2 concept was inspired by SAP’s technical strategy. That’s not to say that SAP’s techies necessarily agree with me on every last point. But I do think it is interesting to review SAP’s version of DBMS2, to the extent I understand it.
1. SAP’s Enterprise Services Architecture (ESA) is meant to be, among other things, an abstraction layer over relational DBMS. The mantra is that they’re moving to a “message-based architecture” as opposed to a “database architecture.” These messages are in the context of a standards-based SOA, with a strong commitment to remaining open and standards-based, at least on the data and messaging levels. (The main limitation on openness that I’ve detected is that they don’t think much of standards such as BPEL in the business process definition area, which aren’t powerful enough for them.)
2. One big benefit they see to this strategy is that it reduces the need to have grand integrated databases. If one application manages data for an entity that is also important to another application, the two applications can exchange messages about the entity. Anyhow, many of their comments make it clear that, between partner company databases (a bit of a future) and legacy app databases (a very big factor in the present day), SAP is constantly aware of situations in which a single integrated database in infeasible.
3. SAP is still deeply suspicious of redundant transactional data. They feel that with redundant data you can’t have a really clean model – unless, of course, you code up really rigorous synchronization. However, if for some reason synchronization is preferred – e.g., for performance reasons — it can be hidden from users and most developers.
4. One area where SAP definitely favors redundancy and synchronization is data warehousing. Indeed, they have an ever more elaborate staging system to move data from operational to analytic systems.
5. In general, they are far from being relational purists. For example, Shai Agassi referred to doing things that you can’t do in a pure relational approach. And Peter Zencke reminded me that this attitude is nothing new. SAP has long had complex business objects, and even done some of its own memory management to make them performant, when they were structured in a manner that RDBMS weren’t well suited for. (I presume he was referring largely to BAPI.)
6. That said, they’re of course using relational data stores today for most things. One exception is text/content, which they prefer to store in their own text indexing/management system TREX. Another example is their historical support for MOLAP, although they seem to be edging as far away from that as they can without offending the MOLAP-loving part of their customer base.
Incidentally, the whole TREX strategy is subject to considerable doubt too. It’s not a state-of-the-art product, and they currently don’t plan to make it into one. In particular, they have a prejudice against semi-automated ontology creation, and that has clearly become a requirement for top-tier text technologies.
7. One thing that Peter said which confused me a bit is when we were talking about nonrelational data retrieval. The example he used was retrieving information on all of a specific sales reps’ customers, or perhaps on several sales reps’ customers. I got the feeling he was talking about the ability to text search on multiple columns and/or multiple tables/objects/whatever at once, but I can’t honestly claim that I connected all the dots.
And of course, the memory-centric ROLAP tool BI Accelerator — technology that’s based on TREX — is just another example of how SAP is willing to go beyond passively connecting to a single RDBMS. And while their sponsorship of MaxDB isn’t really an example of that, it is another example of how SAP’s strategy is not one to gladden the hearts of the top-tier DBMS vendors.
Categories: EAI, EII, ETL, ELT, ETLT, Memory-centric data management, MOLAP, OLTP, SAP AG, Theory and architecture | 9 Comments |
Defining and surveying “Memory-centric data management”
I’m writing more and more about memory-centric data management technology these days, including in my latest Computerworld column. You may be wondering what that term refers to. Well, I’ve basically renamed what are commonly called “in-memory DBMS,” for what I think is a very good reason: Most of the products in the category aren’t true DBMS, aren’t wholly in-memory, or both! Indeed, if you catch me in a grouchy mood I might argue that “in-memory DBMS” is actually a contradiction in terms.
I’ll give a quick summary of the vendors and products I am focusing on in this newly-named category, and it should be clearer what I mean:
- TimesTen (now owned by Oracle): TimesTen is the quintessentional “in-memory DBMS.” It’s a fairly full relational DBMS, but if you want to persist memory to disk it has to be handed off to a conventional DBMS. Historically, that has usually been MySQL or Oracle. TimesTen’s biggest market penetration has been in financial trading.
- Solid Information Technology‘s BoostEngine: Solid is a Finnish company (or was — it’s pretty American now) specializing in embedded DBMS sold mainly for telecommunication uses. Big OEM customers include several well-known telecom equipment manufacturers and HP (for OpenView). “Embedded” often means no DBA, no monitor, no keyboard — they box manufacturer installs it and there it stays for the life of the product. Solid has to offer strong replication capabilities, since its products are often used in highly distributed (e.g., multiblade, multibox) environments. So it’s taken the next step and exploited the replication by allowing customers to use some instances of the product disklessly.
- Event-stream products from Streambase and Progress: The canonical application for event-stream products is automating financial trading decisions based on the flow of market information. Mike Stonebraker, the brains behind Streambase, has recently popularized the idea; Progress bought Apama, who actually have been in the business longer. These applications require even more speed than the financial trading apps that TimesTen handles, and they discard most of the information they look at. In-memory is the only way to go.
- Progress’s ObjectStore: ObjectStore comes from the company Object Design, which merged into Excelon, which was acquired by Progress. It’s really a toolkit for building DBMS and similar systems, which is why it’s at various times been marketed as an OODBMS and an XML DBMS, without a lot of success either way. But there have been a few sterling apps built in ObjectStore even so, including a key part of the Amazon bookstore Despite this limited market success, a significant fraction of Progress’s best engineering talent has moved over to the Real-Time Division to focus on ObjectStore and other memory-centric products. The memory-centric aspect of ObjectStore is this: ObjectStore’s big virtue is that it gets objects from disk to memory and vice-versa very efficiently, then distributes and caches them around a network as needed. This was originally invented for client/server processing, but works fine in a multi-server thin client setup as well. And object processing, of course, relies on a whole lot of pointers. And pointer-chasing is pretty much the worst way to deal with the disk speed barrier, unless you do it in main memory.
- Applix‘s TM1: Like many companies in the analytics area, Applix has had trouble deciding whether it sells applications, BI system software, or both. But in any case its core technology is TM1, a memory-centric MOLAP offering. Traditional MOLAP products reside on the horns of a nasty dilemma: They rely on precalculation to give good performance, but that causes ghastly database explosion. Applix gets out of this problem by doing no precalculation whatsoever, loading the data into main memory, and executing all queries on the fly.
- SAP’s BI Accelerator: SAP is building out an elaborate technology stack with NetWeaver, especially in the BI area. One important aspect is that the full data warehouse is logically broken (or copied) into a series of data marts called “InfoCubes.” BI Accelerator takes the logical next step, loading an entire InfoCube into main memory. Almost every query is executed via a full table scan, which would be insane on disk but makes perfect sense when the data is already in RAM.
So there you have it. There are a whole lot of technologies out there that manage data in RAM, in ways that would make little or no sense if disks were more intimately involved. Conventional DBMS also try to exploit RAM and limit disk access, via caching; but generally the data access methods they use in RAM are pretty similar to those they use when going out to disk. So memory-centric systems can have a major advantage.
The Amazon.com bookstore is a huge, modern OLTP app. So is it relational?
I don’t know for a fact that the Amazon.com bookstore is the world’s biggest OLTP application — but if it isn’t, it’s close.
And the thing is — that’s never been an entirely relational application. Oh, the ordering part surely is. But the inventory lookup is currently driven by an OODBMS (from Progress). The personalization used to be done in Red Brick (I knew which software replaced it, but I’m forgetting at the moment — it may even be one of the relational warehouse appliance vendors). And of course the full-text search is a custom in-house system.