NewSQL
Discussion of NewSQL products and vendors such as Akiban, Tokutek, VoltDB and dbShards. See also transparent sharding.
MemSQL 4.0
I talked with my clients at MemSQL about the release of MemSQL 4.0. Let’s start with the reminders:
- MemSQL started out as in-memory OTLP (OnLine Transaction Processing) DBMS …
- … but quickly positioned with “We also do ‘real-time’ analytic processing” …
- … and backed that up by adding a flash-based column store option …
- … before Gartner ever got around to popularizing the term HTAP (Hybrid Transaction and Analytic Processing).
- There’s also a JSON option.
The main new aspects of MemSQL 4.0 are:
- Geospatial indexing. This is for me the most interesting part.
- A new optimizer and, I suppose, query planner …
- … which in particular allow for serious distributed joins.
- Some rather parallel-sounding connectors to Spark. Hadoop and Amazon S3.
- Usual-suspect stuff including:
- More SQL coverage (I forgot to ask for details).
- Some added or enhanced administrative/tuning/whatever tools (again, I forgot to ask for details).
- Surely some general Bottleneck Whack-A-Mole.
There’s also a new free MemSQL “Community Edition”. MemSQL hopes you’ll experiment with this but not use it in production. And MemSQL pricing is now wholly based on RAM usage, so the column store is quasi-free from a licensing standpoint is as well.
Thoughts and notes, Thanksgiving weekend 2014
I’m taking a few weeks defocused from work, as a kind of grandpaternity leave. That said, the venue for my Dances of Infant Calming is a small-but-nice apartment in San Francisco, so a certain amount of thinking about tech industries is inevitable. I even found time last Tuesday to meet or speak with my clients at WibiData, MemSQL, Cloudera, Citus Data, and MongoDB. And thus:
1. I’ve been sloppy in my terminology around “geo-distribution”, in that I don’t always make it easy to distinguish between:
- Storing different parts of a database in different geographies, often for reasons of data privacy regulatory compliance.
- Replicating an entire database into different geographies, often for reasons of latency and/or availability/ disaster recovery,
The latter case can be subdivided further depending on whether multiple copies of the data can accept first writes (aka active-active, multi-master, or multi-active), or whether there’s a clear single master for each part of the database.
What made me think of this was a phone call with MongoDB in which I learned that the limit on number of replicas had been raised from 12 to 50, to support the full-replication/latency-reduction use case.
2. Three years ago I posted about agile (predictive) analytics. One of the points was:
… if you change your offers, prices, ad placement, ad text, ad appearance, call center scripts, or anything else, you immediately gain new information that isn’t well-reflected in your previous models.
Subsequently I’ve been hearing more about predictive experimentation such as bandit testing. WibiData, whose views are influenced by a couple of Very Famous Department Store clients (one of which is Macy’s), thinks experimentation is quite important. And it could be argued that experimentation is one of the simplest and most direct ways to increase the value of your data.
3. I’d further say that a number of developments, trends or possibilities I’m seeing are or could be connected. These include agile and experimental predictive analytics in general, as noted in the previous point, along with: Read more
21st Century DBMS success and failure
As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.
DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.
In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.
Buyer inertia is a greater concern.
- A significant minority of enterprises are highly committed to their enterprise DBMS standards.
- Another significant minority aren’t quite as committed, but set pretty high bars for new DBMS products to cross nonetheless.
- FUD (Fear, Uncertainty and Doubt) about new DBMS is often justifiable, about stability and consistent performance alike.
A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.
- First the newer products (from Netezza onwards) were sold to organizations who knew they wanted great performance or price/performance.
- Then it became more about selling “business value” to organizations who needed more convincing about the benefits of great price/performance.
- Then the behemoth vendors became more competitive, as Teradata introduced lower-price models, Oracle introduced Exadata, Sybase got more aggressive with Sybase IQ, IBM bought Netezza, EMC bought Greenplum, HP bought Vertica and so on. It is now hard for a non-behemoth analytic RDBMS vendor to make headway at large enterprise accounts.
- Meanwhile, Hadoop has emerged as serious competitor for at least some analytic data management, especially but not only at internet companies.
Otherwise I’d say: Read more
Notes and comments, May 6, 2014
After visiting California recently, I made a flurry of posts, several of which generated considerable discussion.
- My claim that Spark will replace Hadoop MapReduce got much Twitter attention — including some high-profile endorsements — and also some responses here.
- My MemSQL post led to a vigorous comparison of MemSQL vs. VoltDB.
- My post on hardware and storage spawned a lively discussion of Hadoop hardware pricing; even Cloudera wound up disagreeing with what I reported Cloudera as having said. 🙂 Sadly, there was less response to the part about the partial (!) end of Moore’s Law.
- My Cloudera/SQL/Impala/Hive apparently was well-balanced, in that it got attacked from multiple sides via Twitter & email. Apparently, I was too hard on Impala, I was too hard on Hive, and I was too hard on boxes full of cardboard file cards as well.
- My post on the Intel/Cloudera deal garnered a comment reminding us Dell had pushed the Intel distro.
- My CitusDB post picked up a few clarifying comments.
Here is a catch-all post to complete the set. Read more
MemSQL update
I stopped by MemSQL last week, and got a range of new or clarified information. For starters:
- Even though MemSQL (the product) was originally designed for OLTP (OnLine Transaction Processing), MemSQL (the company) is now focused on analytic use cases …
- … which was the point of introducing MemSQL’s flash-based columnar option.
- One MemSQL customer has a 100 TB “data warehouse” installation on Amazon.
- Another has “dozens” of terabytes of data spread across 500 machines, which aggregate 36 TB of RAM.
- At customer Shutterstock, 1000s of non-MemSQL nodes are monitored by 4 MemSQL machines.
- A couple of MemSQL’s top references are also Vertica flagship customers; one of course is Zynga.
- MemSQL reports encountering Clustrix and VoltDB in a few competitive situations, but not NuoDB. MemSQL believes that VoltDB is still hampered by its traditional issues — Java, reliance on stored procedures, etc.
On the more technical side: Read more
NoSQL vs. NewSQL vs. traditional RDBMS
I frequently am asked questions that boil down to:
- When should one use NoSQL?
- When should one use a new SQL product (NewSQL or otherwise)?
- When should one use a traditional RDBMS (most likely Oracle, DB2, or SQL Server)?
The details vary with context — e.g. sometimes MySQL is a traditional RDBMS and sometimes it is a new kid — but the general class of questions keeps coming. And that’s just for short-request use cases; similar questions for analytic systems arise even more often.
My general answers start:
- Sometimes something isn’t broken, and doesn’t need fixing.
- Sometimes something is broken, and still doesn’t need fixing. Legacy decisions that you now regret may not be worth the trouble to change.
- Sometimes — especially but not only at smaller enterprises — choices are made for you. If you operate on SaaS, plus perhaps some generic web hosting technology, the whole DBMS discussion may be moot.
In particular, migration away from legacy DBMS raises many issues: Read more
Categories: Columnar database management, Couchbase, HBase, In-memory DBMS, Microsoft and SQL*Server, NewSQL, NoSQL, OLTP, Oracle, Parallelization, SAP AG | 18 Comments |
Distinctions in SQL/Hadoop integration
Ever more products try to integrate SQL with Hadoop, and discussions of them seem confused, in line with Monash’s First Law of Commercial Semantics. So let’s draw some distinctions, starting with (and these overlap):
- Are the SQL engine and Hadoop:
- Necessarily on the same cluster?
- Necessarily or at least most naturally on different clusters?
- How, if at all, is Hadoop invoked by the SQL engine? Specifically, what is the role of:
- HDFS (Hadoop Distributed File System)?
- Hadoop MapReduce?
- HCatalog?
- How, if at all, is the SQL engine invoked by Hadoop?
In particular:
- If something is called a “connector”, then Hadoop and the SQL engine are most likely on separate clusters. Good features include (but these can partially contradict each other):
- A way of making data transfer maximally parallel.
- Query planning that is smart about when to process on the SQL engine and when to use Hadoop’s native SQL (Hive or otherwise).
- If something is called “SQL-on-Hadoop”, then Hadoop and the SQL engine are or should be on the same cluster, using the same nodes to store and process data. But while that’s a necessary condition, I’d prefer that it not be sufficient.
Let’s go to some examples. Read more
RDBMS and their bundle-mates
Relational DBMS used to be fairly straightforward product suites, which boiled down to:
- A big SQL interpreter.
- A bunch of administrative and operational tools.
- Some very optional add-ons, often including an application development tool.
Now, however, most RDBMS are sold as part of something bigger.
- Oracle has hugely thickened its stack, as part of an Innovator’s Solution strategy — hardware, middleware, applications, business intelligence, and more.
- IBM has moved aggressively to a bundled “appliance” strategy. Even before that, IBM DB2 long sold much better to committed IBM accounts than as a software-only offering.
- Microsoft SQL Server is part of a stack, starting with the Windows operating system.
- Sybase was an exception to this rule, with thin(ner) stacks for both Adaptive Server Enterprise and Sybase IQ. But Sybase is now owned by SAP, and increasingly integrated as a business with …
- … SAP HANA, which is closely associated with SAP’s applications.
- Teradata has always been a hardware/software vendor. The most successful of its analytic DBMS rivals, in some order, are:
- Netezza, a pure appliance vendor, now part of IBM.
- Greenplum, an appliance-mainly vendor for most (not all) of its existence, and in particular now as a part of EMC Pivotal.
- Vertica, more of a software-only vendor than the others, but now owned by and increasingly mainstreamed into hardware vendor HP.
- MySQL’s glory years were as part of the “LAMP” stack.
- Various thin-stack RDBMS that once were or could have been important market players … aren’t. Examples include Progress OpenEdge, IBM Informix, and the various strays adopted by Actian.
Comments on the 2013 Gartner Magic Quadrant for Operational Database Management Systems
The 2013 Gartner Magic Quadrant for Operational Database Management Systems is out. “Operational” seems to be Gartner’s term for what I call short-request, in each case the point being that OLTP (OnLine Transaction Processing) is a dubious term when systems omit strict consistency, and when even strictly consistent systems may lack full transactional semantics. As is usually the case with Gartner Magic Quadrants:
- I admire the raw research.
- The opinions contained are generally reasonable (especially since Merv Adrian joined the Gartner team).
- Some of the details are questionable.
- There’s generally an excessive focus on Gartner’s perception of vendors’ business skills, and on vendors’ willingness to parrot all the buzzphrases Gartner wants to hear.
- The trends Gartner highlights are similar to those I see, although our emphasis may be different, and they may leave some important ones out. (Big omission — support for lightweight analytics integrated into operational applications, one of the more genuine forms of real-time analytics.)
Anyhow: Read more
Tokutek’s interesting indexing strategy
The general Tokutek strategy has always been:
- Write indexes efficiently, which …
- … makes it reasonable to have more indexes, which …
- … lets more queries run fast.
But the details of “writes indexes efficiently” have been hard to nail down. For example, my post about Tokutek indexing last January, while not really mistaken, is drastically incomplete.
Adding further confusion is that Tokutek now has two product lines:
- TokuDB, a MySQL storage engine.
- TokuMX, in which the parts of MongoDB 2.2 that roughly equate to a storage engine are ripped out and replaced with Tokutek code.
TokuMX further adds language support for transactions and a rewrite of MongoDB’s replication code.
So let’s try again. I had a couple of conversations with Martin Farach-Colton, who:
- Is a Tokutek co-founder.
- Stayed in academia.
- Is a data structures guy, not a database expert per se.
The core ideas of Tokutek’s architecture start: Read more
Categories: Database compression, MongoDB, MySQL, NewSQL, Tokutek and TokuDB | 4 Comments |