Data warehouse appliances
Analysis of data warehouse appliances – i.e., of hardware/software bundles optimized for fast query and analysis of large volumes of (usually) relational data. Related subjects include:
- Data warehousing
- Parallelization
- Netezza
- DATAllegro
- Teradata
- Kickfire
- (in The Monash Report) Computing appliances in multiple domains
SAP HANA today
SAP HANA has gotten much attention, mainly for its potential. I finally got briefed on HANA a few weeks ago. While we didn’t have time for all that much detail, it still might be interesting to talk about where SAP HANA stands today.
The HANA section of SAP’s website is a confusing and sometimes inaccurate mess. But an IBM whitepaper on SAP HANA gives some helpful background.
SAP HANA is positioned as an “appliance”. So far as I can tell, that really means it’s a software product for which there are a variety of emphatically-recommended hardware configurations — Intel-only, from what right now are eight usual-suspect hardware partners. Anyhow, the core of SAP HANA is an in-memory DBMS. Particulars include:
- Mainly, HANA is an in-memory columnar DBMS, based on SAP’s confusingly-renamed BI Accelerator/BW Accelerator. Analytics and most OLTP (OnLine Transaction Processing) go against the columnar part of HANA.
- The HANA DBMS also has an in-memory row storage option, used to store metadata, small tables, and so on.
- SAP HANA talks both SQL and MDX.
- The HANA DBMS is shared-nothing across blades or rack servers. I imagine that within an individual blade it’s shared everything. The usual-suspect data distribution or partitioning strategies are available — hash, range, round-robin.
- SAP HANA has what sounds like a natural disk-based persistence strategy — logs, snapshots, and so on. SAP says that this is synchronous enough to give ACID compliance. For some hardware partners, those “disks” are actually Fusion I/O cards.
- HANA is fault-tolerant “across servers”.
- Text support is “coming soon”, which makes sense, given that BI Accelerator was based on the TREX search engine in the first place. Inxight is also in the HANA text mix.
- You can put data into SAP HANA in a variety of obvious ways:
- Writing it directly.
- Trigger-based replication (perhaps from the DBMS that runs your SAP apps).
- Log-based replication (based on Sybase Replication Server).
- SAP Business Objects’ ETL tool.
SAP says that the row-store part is based both on P*Time, an acquisition from Korea some time ago, and also on SAP’s own MaxDB. The IBM white paper mentions only the MaxDB aspect. (Edit: Actually, see the comment thread below.) Based on a variety of clues, I conjecture that this was an aspect of SAP HANA development that did not go entirely smoothly.
Other SAP HANA components include: Read more
Comments on the analytic DBMS industry and Gartner’s Magic Quadrant for same
This year’s Gartner Magic Quadrant for Data Warehouse Database Management Systems is out.* I shall now comment, just as I did on the 2010, 2009, 2008, 2007, and 2006 Gartner Data Warehouse Database Management System Magic Quadrants, to varying extents. To frame the discussion, let me start by saying:
- In general, I regard Gartner Magic Quadrants as a bad use of good research.
- Illustrating the uselessness of — or at least poor execution on — the overall quadrant metaphor, a large majority of the vendors covered are lined up near the line x = y, each outpacing the one below in both of the quadrant’s dimensions.
- I find fewer specifics to disagree with in this Gartner Magic Quadrant than in previous year’s versions. Two factors jump to mind as possible reasons:
- This year’s Gartner Magic Quadrant for Data Warehouse Database Management Systems is somewhat less ambitious than others; while it gives as much company detail as its predecessors, it doesn’t add as much discussion of overall trends. So there’s less to (potentially) disagree with.
- Merv Adrian is now at Gartner.
- Whatever the problems may be with Gartner’s approach, the whole thing comes out better than do Forrester’s failed imitations.
*As of February, 2012 — and surely for many months thereafter — Teradata is graciously paying for a link to the report.
Specific company comments, roughly in line with Gartner’s rough single-dimensional rank ordering, include: Read more
A couple of links explaining Cloudera Manager
Predictably, I wasn’t pre-briefed on the details of Oracle’s Big Data Appliance announcement today, and an inquiry to partner Cloudera doesn’t happen to have been immediately answered.* But anyhow, it’s clear from coverage by Larry Dignan and Derrick Harris that Oracle’s Big Data Appliance includes:
- Some version of Cloudera Manager (I’m guessing more or less the best one).*
- Some version of Apache Hadoop (I’m guessing the same distribution that Cloudera prefers to use).*
- Some kind of support.
In other words, it’s a lot like getting Cloudera Enterprise,* plus some hardware, plus some other stuff.
*Edit: About 2 minutes after I posted this, I got email from Cloudera CEO Mike Olson. Yes, the Oracle Big Data Appliance bundles Cloudera Enterprise.
That raises an anyway recurring question: What exactly is Cloudera Manager? Read more
Some big-vendor execution questions, and why they matter
When I drafted a list of key analytics-sector issues in honor of look-ahead season, the first item was “execution of various big vendors’ ambitious initiatives”. By “execute” I mean mainly:
- “Deliver products that really meet customers’ desires and needs.”
- “Successfully convince them that you’re doing so …”
- “… at an attractive overall cost.”
Vendors mentioned here are Oracle, SAP, HP, and IBM. Anybody smaller got left out due to the length of this post. Among the bigger omissions were:
- salesforce.com (multiple subjects).
- SAS HPA.
- The evolution of Hadoop.
Analytic trends in 2012: Q&A
As a new year approaches, it’s the season for lists, forecasts and general look-ahead. Press interviews of that nature have already begun. And so I’m working on a trilogy of related posts, all based on an inquiry about hot analytic trends for 2012.
This post is a moderately edited form of an actual interview. Two other posts cover analytic trends to watch (planned) and analytic vendor execution challenges to watch (already up).
Some notes on Hadoop (mainly) and appliances
1. EMC Greenplum has evolved its appliance product line. As I read that, the latest announcement boils down to saying that you can neatly network together various Greenplum appliances in quarter-rack increments. If you take a quarter rack each of four different things, then Greenplum says “Hooray! Our appliance is all-in-one!” Big whoop.
2. That said, the Hadoop part of EMC ‘s story is based on MapR, which so far as I can tell is actually a pretty good Hadoop implementation. More precisely, MapR makes strong claims about performance and so on, and Apache Hadoop folks don’t reply “MapR is full of &#$!” Rather, they say “We’re going to close the gap with MapR a lot faster than the MapR folks like to think — and by the way, guys, thanks for the butt-kick.” A lot more precision about MapR may be found in this M. C. Srivas SlideShare.
3. On its latest earnings call, Oracle clearly said it would introduce a Hadoop appliance, versus just hinting at a Hadoop appliance the prior quarter. The money quote was: Read more
Categories: Data warehouse appliances, eBay, EMC, Greenplum, Hadoop, MapR, MapReduce, Open source, Oracle | 2 Comments |
Aster Database Release 5 and Teradata Aster appliance
It was obviously just a matter of time before there would be an Aster appliance from Teradata and some tuned bidirectional Teradata-Aster connectivity. These have now been announced. I didn’t notice anything particularly surprising in the details of either. About the biggest excitement is that Aster is traditionally a Red Hat shop, but for the purposes of appliance delivery has now embraced SUSE Linux.
Along with the announcements comes updated positioning such as:
- Better SQL than the MapReduce alternatives have.
- Better MapReduce than the SQL alternatives have.
- Easy(ier) way to do complex analytics on multi-structured data. (Aster has embraced that term.)
and of course
- Now also with Teradata’s beautifully engineered hardware and system management software!
Categories: Aster Data, Data warehouse appliances, Data warehousing, Predictive modeling and advanced analytics, Teradata, Workload management | Leave a Comment |
Eight kinds of analytic database (Part 2)
In Part 1 of this two-part series, I outlined four variants on the traditional enterprise data warehouse/data mart dichotomy, and suggested what kinds of DBMS products you might use for each. In Part 2 I’ll cover four more kinds of analytic database — even newer, for the most part, with a use case/product short list match that is even less clear. Read more
Eight kinds of analytic database (Part 1)
Analytic data management technology has blossomed, leading to many questions along the lines of “So which products should I use for which category of problem?” The old EDW/data mart dichotomy is hopelessly outdated for that purpose, and adding a third category for “big data” is little help.
Let’s try eight categories instead. While no categorization is ever perfect, these each have at least some degree of technical homogeneity. Figuring out which types of analytic database you have or need — and in most cases you’ll need several — is a great early step in your analytic technology planning. Read more
What to think about BEFORE you make a technology decision
When you are considering technology selection or strategy, there are a lot of factors that can each have bearing on the final decision — a whole lot. Below is a very partial list.
In almost any IT decision, there are a number of environmental constraints that need to be acknowledged. Organizations may have standard vendors, favored vendors, or simply vendors who give them particularly deep discounts. Legacy systems are in place, application and system alike, and may or may not be open to replacement. Enterprises may have on-premise or off-premise preferences; SaaS (Software as a Service) vendors probably have multitenancy concerns. Your organization can determine which aspects of your system you’d ideally like to see be tightly integrated with each other, and which you’d prefer to keep only loosely coupled. You may have biases for or against open-source software. You may be pro- or anti-appliance. Some applications have a substantial need for elastic scaling. And some kinds of issues cut across multiple areas, such as budget, timeframe, security, or trained personnel.
Multitenancy is particularly interesting, because it has numerous implications. Read more