EAI, EII, ETL, ELT, ETLT
Analysis of data integration products and technologies, especially ones related to data warehousing, such as ELT (Extract/Transform/Load). Related subjects include:
Data integration vendors and Hadoop
There have been many recent announcements about how data integration/ETL (Extract/Transform/Load) vendors are going to work with MapReduce. Most of what they say boils down to one or more of a few things:
- Hadoop generally stores data in HDFS (Hadoop Distributed File System). ETL vendors want to be able to extract data from or load it into HDFS.
- ETL vendors have development environments that let you specify/script/whatever ETL jobs. ETL vendors want their development tools to develop ETL processes executed via MapReduce/Hadoop.
- In particular, this allows ETL vendors to exploit the parallel-processing capabilities of MapReduce.
Some additional twists include:
- Pentaho announced business intelligence and ETL for Hadoop last year.
- Syncsort thinks different sort algorithms should be usable with Hadoop. Consequently, it plans to contribute technology to the community to make sort pluggable into Hadoop. (However, Syncsort is keeping its own sort technology proprietary.)
- Syncsort is considering replicating some Hive functionality, starting with joins, hopefully running much faster. (However, Syncsort’s basic Hadoop support is a quarter or three away, so any more advanced functionality would probably come out in 2012 or beyond.)
- SnapLogic fondly thinks that its generation of MapReduce jobs is particularly intelligent.
Finally, my former clients at Pervasive, who haven’t briefed me for a while, seem to have told Doug Henschen that they have pointed DataRush at MapReduce.* However, I couldn’t find evidence of same on the Pervasive DataRush website beyond some help in using all the cores on any one Hadoop node.
*Also see that article because it names a bunch of ETL vendors doing Hadoop-related things.
Categories: Data integration and middleware, EAI, EII, ETL, ELT, ETLT, Hadoop, MapReduce, Parallelization, Pentaho, Pervasive Software, SnapLogic, Syncsort | 1 Comment |
Introduction to Syncsort and DMExpress
Let’s start with some Syncsort basics.
- Syncsort was founded in 1968.
- As you might guess from its name and age, Syncsort started out selling software for IBM mainframes, used for sorting data. However, for the past 30 or so years, Syncsort’s products have gone beyond sort to also do join, aggregation, and merge. This was the basis for Syncsort’s expansion into the more general ETL (Extract/Transform/Load) business.
- As you might further guess, along the way there was a port to UNIX, development of a GUI (Graphical User Interface), and a change of ownership as Syncsort’s founder more or less cashed out.
- At this point, Syncsort sees itself primarily as a data integration/ETL company, whose main claim to fame is performance, with further claims of linear scaling and no manual tuning.*
One of Syncsort’s favorite value propositions is to contrast the cost of doing ETL in Syncsort, on commodity hardware, to the cost of doing ELT (Extract/Load/Transform) on high-end Teradata gear.
Categories: Data integration and middleware, Database compression, EAI, EII, ETL, ELT, ETLT, Specific users, Syncsort | 9 Comments |
Comments on EMC Greenplum
I am annoyed with my former friends at Greenplum, who took umbrage at a brief sentence I wrote in October, namely “eBay has thrown out Greenplum“. Their reaction included:
- EMC Greenplum no longer uses my services.
- EMC Greenplum no longer briefs me.
- EMC Greenplum reneged on a commitment to fund an effort in the area of privacy.
The last one really hurt, because in trusting them, I put in quite a bit of effort, and discussed their promise with quite a few other people.
Three ways Fedex is a metaphor for data integration
It occurs to me that there are three reasons why Federal Express, aka Fedex, is a great metaphor for data integration. Read more
Vertica-Hadoop integration
DBMS/Hadoop integration is a confusing subject. My post on the Cloudera/Aster Data partnership awaits some clarification in the comment thread. A conversation with Vertica left me unsure about some Hadoop/Vertica Year 2 details as well, although I’m doing better after a follow-up call. On the plus side, we also covered some rather cool Hadoop/Vertica product futures, and those seemed easier to understand. 🙂
I say “Year 2” because Hadoop/Vertica integration has been going on since last year. Indeed, Vertica says that there are now over 25 users of the Hadoop/Vertica combination and hence Vertica’s Hadoop connector. Vertica is now introducing — for immediate GA — a new version of its Hadoop connector. So far as I understood: Read more
Categories: Analytic technologies, Cloudera, EAI, EII, ETL, ELT, ETLT, Hadoop, MapReduce, Market share and customer counts, SQL/Hadoop integration, Text, Vertica Systems | 6 Comments |
Evidently IBM bought Cast Iron Systems for $190 million
Sequoia told TechCrunch that Cast Iron Systems was acquired for $190 million. That’s a much more successful exit than I thought.
Categories: Cast Iron Systems, Data integration and middleware, EAI, EII, ETL, ELT, ETLT, IBM and DB2 | 2 Comments |
Some thoughts on the announcement that IBM is buying Netezza
As you’ve probably read, IBM and Netezza announced a deal today for IBM to buy Netezza. I didn’t sit in on the conference call, but I’ve seen the reporting. Naturally, I have some quick thoughts, which I’ve broken up into several sections below:
- Clearing some underbrush.
- Speculation about what IBM/Netezza will do.
- Speculation about alternative acquirers for Netezza.
- Speculation about what IBM/Netezza competitors will do.
The Workday architecture — a new kind of OLTP software stack
One of my coolest company visits in some time was to SaaS (Software as a Service) vendor Workday, Inc., earlier this month. Reasons included:
- Workday has forward-thinking ideas about SaaS enterprise applications and the integration of business intelligence into same.
- Workday has highly innovative ideas in how it manages data.
- Companies founded by Dave Duffield tend to feature smart, likeable people who talk to one pleasantly and forthrightly. Workday is no exception; CTO Stan Swete and the other Workday folks present were a delight to talk with.
- I’d invited Merv Adrian to come along with me. He asked great questions, and I could gather myself a bit despite how sleep-deprived I was for the first part of that trip.
Workday kindly allowed me to post this Workday slide deck. Otherwise, I’ve split out a quick Workday, Inc. company overview into a separate post.
The biggie for me was the data and object management part. Specifically: Read more
Cloudera Enterprise and Hadoop evolution
I talked with Cloudera a couple of weeks ago in connection with the impending release of Cloudera Enterprise. I’d say: Read more
VoltDB finally launches
VoltDB is finally launching today. As is common for companies in sectors I write about, VoltDB — or just “Volt” — has discovered the virtues of embargoes that end 12:01 am. Let’s go straight to the technical highlights:
- VoltDB is based on the H-Store technology, which I wrote about in February, 2009. Most of what I said about H-Store then applies to VoltDB today.
- VoltDB is a no-apologies ACID relational DBMS, which runs entirely in RAM.
- VoltDB has rather limited SQL. (One example: VoltDB can’t do SUMs in SQL.) However, VoltDB guy Tim Callaghan (Mark Callaghan’s lesser-known but nonetheless smart brother) asserts that if you code up the missing functionality, it’s almost as fast as if it were present in the DBMS to begin with, because there’s no added I/O from the handoff between the DBMS and the procedural code. (The data’s in RAM one way or the other.)
- VoltDB’s Big Conceptual Performance Story is that it does away with most locks, latches, logs, etc., and also most context switching.
- In particular, you’re supposed to partition your data and architect your application so that most transactions execute on a single core. When you can do that, you get VoltDB’s performance benefits. To the extent you can’t, you’re in two-phase-commit performance land. (More precisely, you’re doing 2PC for multi-core writes, which is surely a major reason that multi-core reads are a lot faster in VoltDB than multi-core writes.)
- VoltDB has a little less than one DBMS thread per core. When the data partitioning works as it should, you execute a complete transaction in that single thread. Poof. No context switching.
- A transaction in VoltDB is a Java stored procedure. (The early idea of Ruby on Rails in lieu of the Java/SQL combo didn’t hold up performance-wise.)
- Solid-state memory is not a viable alternative to RAM for VoltDB. Too slow.
- Instead, VoltDB lets you snapshot data to disk at tunable intervals. “Continuous” is one of the options, wherein a new snapshot starts being made as soon as the last one completes.
- In addition, VoltDB will also spool a kind of transaction log to the target of your choice. (Obvious choice: An analytic DBMS such as Vertica, but there’s no such connectivity partnership actually in place at this time.)