March 23, 2014

Wants vs. needs

In 1981, Gerry Chichester and Vaughan Merlyn did a user-survey-based report about transaction-oriented fourth-generation languages, the leading application development technology of their day. The report included top-ten lists of important features during the buying cycle and after implementation. The items on each list were very similar — but the order of the items was completely different. And so the report highlighted what I regard as an eternal truth of the enterprise software industry:

What users value in the product-buying process is quite different from what they value once a product is (being) put into use.

Here are some thoughts about how that comes into play today.

Wants outrunning needs

1. For decades, BI tools have been sold in large part via demos of snazzy features the CEO would like to have on his desk. First it was pretty colors; then it was maps; now sometimes it’s “real-time” changing displays. Other BI features, however, are likely to be more important in practice.

2. In general, the need for “real-time” BI data freshness is often exaggerated. If you’re a human being doing a job that’s also often automated at high speed — for example network monitoring or stock trading — there’s a good chance you need fully human real-time BI. Otherwise, how much does a 5-15 minute delay hurt? Even if you’re monitoring website sell-through — are your business volumes really high enough that 5 minutes matters much? eBay answered “yes” to that question many years ago, but few of us work for businesses anywhere near eBay’s scale.

Even so, the want for speed keeps growing stronger. 🙂

3. Similarly, some desires for elastic scale-out are excessive. Your website selling koi pond accessories should always run well on a single server. If you diversify your business to the point that that’s not true, you’ll probably rewrite your app by then as well.

4. Some developers want to play with cool new tools. That doesn’t mean those tools are the best choice for the job. In particular, boring old SQL has merits — such as joins! — that shiny NoSQL hasn’t yet replicated.

5. Some developers, on the other hand, want to keep using their old tools, on which they are their employers’ greatest experts. That doesn’t mean those tools are the best choice for the job either.

6. More generally, some enterprises insist on brand labels that add little value but lots of expense. Yes, there are many benefits to vendor consolidation, and you may avoid many headaches if you stick with not-so-cutting-edge technology. But “enterprise-grade” hardware failure rates may not differ enough from “consumer-grade” ones to be worth paying for.

Read more

February 1, 2014

More on public policy

Occasionally I take my public policy experience out for some exercise. Last week I wrote about privacy and network neutrality. In this post I’ll survey a few more subjects.

1. Censorship worries me, a lot. A classic example is Vietnam, which basically has outlawed online political discussion.

And such laws can have teeth. It’s hard to conceal your internet usage from an inquisitive government.

2. Software and software related patents are back in the news. Google, which said it was paying $5.5 billion or so for a bunch of Motorola patents, turns out to really have paid $7 billion or more. Twitter and IBM did a patent deal as well. Big numbers, and good for certain shareholders. But this all benefits the wider world — how?

As I wrote 3 1/2 years ago:

The purpose of legal intellectual property protections, simply put, is to help make it a good decision to create something.

Why does “securing … exclusive Right[s]” to the creators of things that are patented, copyrighted, or trademarked help make it a good decision for them to create stuff? Because it averts competition from copiers, thus making the creator a monopolist in what s/he has created, allowing her to at least somewhat value-price her creation.

I.e., the core point of intellectual property rights is to prevent copying-based competition. By way of contrast, any other kind of intellectual property “right” should be viewed with great suspicion.

That Constitutionally-based principle makes as much sense to me now as it did then. By way of contrast, “Let’s give more intellectual property rights to big corporations to protect middle-managers’ jobs” is — well, it’s an argument I view with great suspicion.

But I find it extremely hard to think of a technology industry example in which development was stimulated by the possibility of patent protection. Yes, the situation may be different in pharmaceuticals, or for gadgeteering home inventors, but I can think of no case in which technology has been better, or faster to come to market, because of the possibility of a patent-law monopoly. So if software and business-method patents were abolished entirely — even the ones that I think could be realistically adjudicatedI’d be pleased.

3. In November, 2008 I offered IT policy suggestions for the incoming Obama Administration, especially:  Read more

November 24, 2013

Thoughts on SaaS

Generalizing about SaaS (Software as a Service) is hard. To prune some of the confusion, let’s start by noting:

For smaller enterprises, the core outsourcing argument is compelling. How small? Well:

So except for special cases, an enterprise with less than $100 million or so in revenue may have trouble affording on-site data processing, at least at a mission-critical level of robustness. It may well be better to use NetSuite or something like that, assuming needed features are available in SaaS form.*

Read more

August 12, 2013

Things I keep needing to say

Some subjects just keep coming up. And so I keep saying things like:

Most generalizations about “Big Data” are false. “Big Data” is a horrific catch-all term, with many different meanings.

Most generalizations about Hadoop are false. Reasons include:

Hadoop won’t soon replace relational data warehouses, if indeed it ever does. SQL-on-Hadoop is still very immature. And you can’t replace data warehouses unless you have the power of SQL.

Note: SQL isn’t the only way to provide “the power of SQL”, but alternative approaches are just as immature.

Most generalizations about NoSQL are false. Different NoSQL products are … different. It’s not even accurate to say that all NoSQL systems lack SQL interfaces. (For example, SQL-on-Hadoop often includes SQL-on-HBase.)

Read more

June 6, 2013

Dave DeWitt responds to Daniel Abadi

A few days ago I posted Daniel Abadi’s thoughts in a discussion of Hadapt, Microsoft PDW (Parallel Data Warehouse)/PolyBase, Pivotal/Greenplum Hawq, and other SQL-Hadoop combinations. This is Dave DeWitt’s response. Emphasis mine.

Read more

April 1, 2013

Some notes on new-era data management, March 31, 2013

Hmm. I probably should have broken this out as three posts rather than one after all. Sorry about that.

Performance confusion

Discussions of DBMS performance are always odd, for starters because:

But in NoSQL/NewSQL short-request processing performance claims seem particularly confused. Reasons include but are not limited to:

MongoDB and 10gen

I caught up with Ron Avnur at 10gen. Technical highlights included: Read more

February 6, 2013

Key questions when selecting an analytic RDBMS

I recently complained that the Gartner Magic Quadrant for Data Warehouse DBMS conflates many use cases into one set of rankings. So perhaps now would be a good time to offer some thoughts on how to tell use cases apart. Assuming you know that you really want to manage your analytic database with a relational DBMS, the first questions you ask yourself could be:

Let’s drill down. Read more

January 17, 2013

YCSB benchmark notes

Two different vendors recently tried to inflict benchmarks on me. Both were YCSBs, so I decided to look up what the YCSB (Yahoo! Cloud Serving Benchmark) actually is. It turns out that the YCSB:

That actually sounds pretty good, especially the extensibility part;* it’s likely that the YCSB can be useful in a variety of product selection scenarios. Still, as recent examples show, benchmark marketing is an annoying blight upon the database industry.

*With extensibility you can test your own workloads and do your own sensitivity analyses.

A YCSB overview page features links both to the code and to the original explanatory paper. The clearest explanation of the YCSB I found there was: Read more

October 11, 2012

Oracle and IBM — strategic context

By my standards, I’ve been writing a lot about Oracle and IBM recently. Let me now step back and review the context in which I view them.

At the highest level, Oracle and IBM have similar strategic priorities, in line with the Innovator’s Dilemma/Innovator’s Solution issues I keep mentioning. That is:

Of course, there are major differences in the two companies’ product and service portfolios. Some of the biggest are: Read more

June 25, 2012

Why I’m so forward-leaning about Hadoop features

In my recent series of Hadoop posts, there were several cases where I had to choose between recommending that enterprises:

I favored the more advanced features each time. Here’s why.

To a first approximation, I divide Hadoop use cases into two major buckets, only one of which I was addressing with my comments:

1. Analytic data management.* Here I favored features over reliability because they are more important, for Hadoop as for analytic RDBMS before it. When somebody complains about an analytic data store not being ready for prime time, never really working, or causing them to tear their hair out, what they usually mean is that:

Those complaints are much, much, more frequent than “It crashed”. So it was for Netezza, DATAllegro, Greenplum, Aster Data, Vertica, Infobright, et al. So it also is for Hadoop. And how does one address those complaints? By performance and feature enhancements, of the kind that the Hadoop community is introducing at high speed. Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.