Telecommunications

Posts about database and analytic technologies applied to the telecommunications industry, especially in call detail record (CDR) applications. Related subjects include:

February 1, 2011

Cassandra company DataStax (formerly Riptano) is on track

Riptano, the Cassandra company, has changed its name to DataStax. DataStax has opened headquarters in Burlingame and hired some database-experienced folks – notably Ben Werther from Greenplum and Michael Weir from ParAccel, with Zenobia Godschalk (who worked with Aster Data) somewhere in the outside PR mix. Other than that, what’s new at DataStax is pretty much what could have been expected based on what DataStax folks said last spring.

Most notably, DataStax is introducing a software offering, whose full name is DataStax OpsCenter for Apache Cassandra. DataStax OpsCenter for Apache Cassandra seems to be, in essence, a monitoring tool for Cassandra clusters, with a bit of capacity planning bundled in. (If there are any outright operations parts to DataStax OpsCenter, they got overlooked in our conversation.)* Read more

January 11, 2011

The technology of privacy threats

This post is the second of a series. The first one was an overview of privacy dangers, replete with specific examples of kinds of data that are stored for good reasons, but can also be repurposed for more questionable uses. More on this subject may be found in my August, 2010 post Big Data is Watching You!

There are two technology trends driving electronic privacy threats. Taken together, these trends raise scenarios such as the following:

Not all these stories are quite possible today, but they aren’t far off either.

Read more

January 10, 2011

Privacy dangers — an overview

This post is the first of a series. The second one delves into the technology behind the most serious electronic privacy threats.

The privacy discussion has gotten more active, and more complicated as well. A year ago, I still struggled to get people to pay attention to privacy concerns at all, at least in the United States, with my first public breakthrough coming at the end of January. But much has changed since then.

On the commercial side, Facebook modified its privacy policies, garnering great press attention and an intense user backlash, leading to a quick partial retreat. The Wall Street Journal then launched a long series of articles — 13 so far — recounting multiple kinds of privacy threats. Other media joined in, from Forbes to CNet. Various forms of US government rule-making to inhibit advertising-related tracking have been proposed as an apparent result.

In the US, the government had a lively year as well. The Transportation Security Administration (TSA) rolled out what have been dubbed “porn scanners,” and backed them up with “enhanced patdowns.” For somebody who is, for example, female, young, a sex abuse survivor, and/or a follower of certain religions, those can be highly unpleasant, if not traumatic. Meanwhile, the Wikileaks/Cablegate events have spawned a government reaction whose scope is only beginning to be seen. A couple of “highlights” so far are some very nasty laptop seizures, and the recent demand for information on over 600,000 Twitter accounts. (Christopher Soghoian provided a detailed, nuanced legal analysis of same.)

At this point, it’s fair to say there are at least six different kinds of legitimate privacy fear. Read more

October 19, 2010

Introduction to Kaminario

At its core, the Kaminario story is simple:

In other words, Kaminario pitches a value proposition something like (my words, not theirs) “A shortcut around your performance bottlenecks.”

*1 million or so on the smallest Kaminario K2 appliance.

Kaminario asserts that both analytics and OLTP (OnLine Transaction Processing) are represented in its user base. Even so, the use cases Kaminario mentioned seemed to be concentrated on the analytic side. I suspect there are two main reasons:

*Somebody can think up a new analytic query overnight that takes 10 times the processing of anything they’ve ever run before. Or they can get the urge to run the same queries 10 times as often as before. Both those kinds of thing happen less often in the OLTP world.

Accordingly, Kaminario likes to sell against the alternative of getting a better analytic DBMS, stressing that you can get a Kaminario K2 appliance into production a lot faster than you can move your processing to even the simplest data warehouse appliance.  Kaminario is probably technically correct in saying that; even so, I suspect it would often make more sense to view Kaminario K2 appliances as a transition technology, by which I mean:

On that basis, I could see Kaminario-like devices eventually getting to the point that every sufficiently large enterprise should have some of them, whether or not that enterprise has an application it believes should run permanently against DRAM block storage.  Read more

August 11, 2010

Big Data is Watching You!

There’s a boom in large-scale analytics. The subjects of this analysis may be categorized as:

The most varied, interesting, and valuable of those four categories is the first one.

Read more

May 25, 2010

VoltDB finally launches

VoltDB is finally launching today. As is common for companies in sectors I write about, VoltDB — or just “Volt” — has discovered the virtues of embargoes that end 12:01 am. Let’s go straight to the technical highlights:

Read more

May 23, 2010

More on Sybase IQ, including Version 15.2

Back in March, Sybase was kind enough to give me permission to post a slide deck about Sybase IQ. Well, I’m finally getting around to doing so. Highlights include but are not limited to:

Sybase IQ may have a bit of a funky architecture (e.g., no MPP), but the age of the product and the substantial revenue it generates have allowed Sybase to put in a bunch of product features that newer vendors haven’t gotten around to yet.

More recently, Sybase volunteered permission for me to preannounce Sybase IQ Version 15.2 by a few days (it’s scheduled to come out this week). Read more

April 12, 2010

Greenplum Chorus and Greenplum 4.0

Greenplum is making two product announcements this morning. Greenplum 4.0 is a revision of the core Greenplum database technology. In addition, Greenplum is announcing Greenplum Chorus, which is the first product release instantiating last year’s EDC (Enterprise Data Cloud) vision statement and marketing campaign.

Greenplum 4.0 highlights and related observations include: Read more

April 8, 2010

Examples of machine-generated data

Not long ago I pointed out that much future Big Data growth will be in the area of machine-generated data, examples of which include: Read more

January 17, 2010

Three broad categories of data

People often try to draw a distinction between:

There are plenty of problems with these formulations, not the least of which is that the supposedly “unstructured” data is the kind that actually tends to have interesting internal structures. But of the many reasons why these distinctions don’t tend to work very well, I think the most important one is that:

Databases shouldn’t be divided into just two categories. Even as a rough-cut approximation, they should be divided into three, namely:

Even that trichotomy is grossly oversimplified, for reasons such as:

But at least as a starting point, I think this basic categorization has some value. Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.