Games and virtual worlds
Analysis of how database and related technologies are used in games and virtual worlds. Related subjects include:
- CEP (Complex Event Processing)
- (in The Monash Report) Other aspects of game technology
Couchbase business update
I decided I needed some Couchbase drilldown, on business and technology alike, so I had solid chats with both CEO Bob Wiederhold and Chief Architect Dustin Sallings. Pretty much everything I wrote at the time Membase and CouchOne merged to form Couchbase (the company) still holds up. But I have more detail now. 😉
Context for any comments on customer traction includes:
- Membase went into limited production release in October, and full release in January. Similar things are true of CouchDB.
- Hence, most sales of Couchbase’s products have been made over the past 6 months.
- Couchbase (the merged product) is at this point only in a pre-production developer’s release.
- Couchbase has both a direct sales force and a classic open-source “funnel”-based online selling model. Naturally, Couchbase’s understanding of what its customers are doing is more solid with respect to the direct sales base.
- Most of Couchbase’s revenue to date seems to have come from a limited number of big-ticket “lighthouse” accounts (as opposed to, say, the larger number of smaller deals that come in through the online funnel).
That said,
- Most Membase purchases are for new applications, as opposed to memcached migrations. However, customers are the kinds of companies that probably also are using memcached elsewhere.
- Most other Membase purchases are replacements for the Membase/MySQL combination. Bob says those are easy sales with short sales cycles.
- Pure memcached support is a small but non-zero business for Couchbase, and a fine source of upsell opportunities.
- In the pipeline but not so much yet in the customer base are SaaS vendors and the like who use and may want to replace traditional DBMS such as Oracle. Other than among those, Couchbase doesn’t compete much yet with Oracle et al.
- Pure CouchDB isn’t all that much of a business, at least relative to community size, as CouchDB is a single-server product commonly used by people who are content not to pay for support.
Membase sales are concentrated in five kinds of internet-centric companies, which in declining order are: Read more
MongoDB users and use cases
I spoke with Eliot Horowitz and Max Schierson of 10gen last month about MongoDB users and use cases. The biggest clusters they came up with weren’t much over 100 nodes, but clusters an order of magnitude bigger were under development. The 100 node one we talked the most about had 33 replica sets, each with about 100 gigabytes of data, so that’s in the 3-4 terabyte range total. In general, the largest MongoDB databases are 20-30 TB; I’d guess those really do use the bulk of available disk space. Read more
Categories: Data models and architecture, Games and virtual worlds, Log analysis, MongoDB, NoSQL, Solid-state memory, Specific users, Splunk, Telecommunications, Web analytics | 13 Comments |
An odd claim attributed to Mike Stonebraker
This post has a sequel.
Last week, Mike Stonebraker insulted MySQL and Facebook’s use of it, by implication advocating VoltDB instead. Kerfuffle ensued. To the extent Mike was saying that non-transparently sharded MySQL isn’t an ideal way to do things, he’s surely right. That still leaves a lot of options for massive short-request databases, however, including transparently sharded RDBMS, scale-out in-memory DBMS (whether or not VoltDB*), and various NoSQL options. If nothing else, Couchbase would seem superior to memcached/non-transparent MySQL if you were starting a project today.
*The big problem with VoltDB, last I checked, was its reliance on Java stored procedures to get work done.
Pleasantries continued in The Register, which got an amazing-sounding quote from Mike. If The Reg is to be believed — something I wouldn’t necessarily take for granted — Mike claimed that he (i.e. VoltDB) knows how to solve the distributed join performance problem. Read more
Categories: Cache, Clustering, Couchbase, Games and virtual worlds, In-memory DBMS, memcached, Michael Stonebraker, MySQL, Parallelization, Theory and architecture, VoltDB and H-Store | 20 Comments |
Columnar DBMS vendor customer metrics
Last April, I asked some columnar DBMS vendors to share customer metrics. They answered, but it took until now to iron out a couple of details. Overall, the answers are pretty impressive. Read more
The most important part of the “social graph” is neither social nor a graph
“Social graph” is a highly misleading term, and so is “social network analysis.” By this I mean:
There’s something akin to “social graphs” and “social network analysis” that is more or less worthy of all the current hype – but graphs and network analysis are only a minor part of the whole story.
In particular, the most important parts of the Facebook “social graph” are neither social nor a graph. Rather, what’s really important is an aggregate Profile of Revealed Preferences, of which person-to-person connections or other things best modeled by a graph play only a small part.
Categories: Analytic technologies, Facebook, Games and virtual worlds, RDF and graphs, Surveillance and privacy, Web analytics | 13 Comments |
VoltDB finally launches
VoltDB is finally launching today. As is common for companies in sectors I write about, VoltDB — or just “Volt” — has discovered the virtues of embargoes that end 12:01 am. Let’s go straight to the technical highlights:
- VoltDB is based on the H-Store technology, which I wrote about in February, 2009. Most of what I said about H-Store then applies to VoltDB today.
- VoltDB is a no-apologies ACID relational DBMS, which runs entirely in RAM.
- VoltDB has rather limited SQL. (One example: VoltDB can’t do SUMs in SQL.) However, VoltDB guy Tim Callaghan (Mark Callaghan’s lesser-known but nonetheless smart brother) asserts that if you code up the missing functionality, it’s almost as fast as if it were present in the DBMS to begin with, because there’s no added I/O from the handoff between the DBMS and the procedural code. (The data’s in RAM one way or the other.)
- VoltDB’s Big Conceptual Performance Story is that it does away with most locks, latches, logs, etc., and also most context switching.
- In particular, you’re supposed to partition your data and architect your application so that most transactions execute on a single core. When you can do that, you get VoltDB’s performance benefits. To the extent you can’t, you’re in two-phase-commit performance land. (More precisely, you’re doing 2PC for multi-core writes, which is surely a major reason that multi-core reads are a lot faster in VoltDB than multi-core writes.)
- VoltDB has a little less than one DBMS thread per core. When the data partitioning works as it should, you execute a complete transaction in that single thread. Poof. No context switching.
- A transaction in VoltDB is a Java stored procedure. (The early idea of Ruby on Rails in lieu of the Java/SQL combo didn’t hold up performance-wise.)
- Solid-state memory is not a viable alternative to RAM for VoltDB. Too slow.
- Instead, VoltDB lets you snapshot data to disk at tunable intervals. “Continuous” is one of the options, wherein a new snapshot starts being made as soon as the last one completes.
- In addition, VoltDB will also spool a kind of transaction log to the target of your choice. (Obvious choice: An analytic DBMS such as Vertica, but there’s no such connectivity partnership actually in place at this time.)
The Clustrix story
After my recent post, the Clustrix guys raised their hands and briefed me. Takeaways included: Read more
Categories: Application areas, Clustrix, Emulation, transparency, portability, Games and virtual worlds, MySQL, NoSQL, OLTP, Parallelization, Solid-state memory | 8 Comments |
Vertica update
Last month, Vertica’s CEO Ralph Breslauer quit,* and Vertica made it sound like there would be a new CEO late in April. And indeed, as of April 29, there was. He’s a guy I’ve never heard of before named Chris Lynch, apparently quite the sales machine builder. The most substance I’ve found is a pair of Mass High Tech articles — the latter exceedingly typo-ridden — to the general effect that:
- Vertica plans to build a massive, world-conquering sales force.
- If Vertica dips back into negative cash flow to do that and has to raise more venture capital, so be it.
- “Triple-digit” revenue growth is expected for this year.
Examples of machine-generated data
Not long ago I pointed out that much future Big Data growth will be in the area of machine-generated data, examples of which include: Read more
Categories: Analytic technologies, Data warehousing, Games and virtual worlds, Investment research and trading, Log analysis, Oracle, Telecommunications, Web analytics | 27 Comments |
Quick news, links, comments, etc.
Some notes based on what I’ve been reading recently: Read more