Investment research and trading

Discussion of how data management and analytic technologies are used in trading and investment research. (As opposed to a discussion of the services we ourselves provide to investors.) Related subjects include:

March 23, 2014

DBMS2 revisited

The name of this blog comes from an August, 2005 column. 8 1/2 years later, that analysis holds up pretty well. Indeed, I’d keep the first two precepts exactly as I proposed back then:

I’d also keep the general sense of the third precept, namely appropriately-capable data integration, but for that one the specifics do need some serious rework.

For starters, let me say: Read more

February 2, 2014

Some stuff I’m thinking about (early 2014)

From time to time I like to do “what I’m working on” posts. From my recent blogging, you probably already know that includes:

Other stuff on my mind includes but is not limited to:

1. Certain categories of buying organizations are inherently leading-edge.

Fine. But what really intrigues me is when more ordinary enterprises also put leading-edge technologies into production. I pester everybody for examples of that.

Read more

April 25, 2013

Analytic application themes

I talk with a lot of companies, and repeatedly hear some of the same application themes. This post is my attempt to collect some of those ideas in one place.

1. So far, the buzzword of the year is “real-time analytics”, generally with “operational” or “big data” included as well. I hear variants of that positioning from NewSQL vendors (e.g. MemSQL), NoSQL vendors (e.g. AeroSpike), BI stack vendors (e.g. Platfora), application-stack vendors (e.g. WibiData), log analysis vendors (led by Splunk), data management vendors (e.g. Cloudera), and of course the CEP industry.

Yeah, yeah, I know — not all the named companies are in exactly the right market category. But that’s hard to avoid.

Why this gold rush? On the demand side, there’s a real or imagined need for speed. On the supply side, I’d say:

2. More generally, most of the applications I hear about are analytic, or have a strong analytic aspect. The three biggest areas — and these overlap — are:

Also arising fairly frequently are:

I’m hearing less about quality, defect tracking, and equipment maintenance than I used to, but those application areas have anyway been ebbing and flowing for decades.

Read more

April 23, 2013

MemSQL scales out

The third of my three MySQL-oriented clients I alluded to yesterday is MemSQL. When I wrote about MemSQL last June, the product was an in-memory single-server MySQL workalike. Now scale-out has been added, with general availability today.

MemSQL’s flagship reference is Zynga, across 100s of servers. Beyond that, the company claims (to quote a late draft of the press release):

Enterprises are already using distributed MemSQL in production for operational analytics, network security, real-time recommendations, and risk management.

All four of those use cases fit MemSQL’s positioning in “real-time analytics”. Besides Zynga, MemSQL cites penetration into traditional low-latency markets — financial services (various subsectors) and ad-tech.

Highlights of MemSQL’s new distributed architecture start: Read more

April 1, 2013

Some notes on new-era data management, March 31, 2013

Hmm. I probably should have broken this out as three posts rather than one after all. Sorry about that.

Performance confusion

Discussions of DBMS performance are always odd, for starters because:

But in NoSQL/NewSQL short-request processing performance claims seem particularly confused. Reasons include but are not limited to:

MongoDB and 10gen

I caught up with Ron Avnur at 10gen. Technical highlights included: Read more

February 13, 2013

It’s hard to make data easy to analyze

It’s hard to make data easy to analyze. While everybody seems to realize this — a few marketeers perhaps aside — some remarks might be useful even so.

Many different technologies purport to make data easy, or easier, to an analyze; so many, in fact, that cataloguing them all is forbiddingly hard. Major claims, and some technologies that make them, include:

*Complex event/stream processing terminology is always problematic.

My thoughts on all this start:  Read more

January 28, 2013

Attack of the Frankenschemas

In typical debates, the extremists on both sides are wrong. “SQL vs. NoSQL” is an example of that rule. For many traditional categories of database or application, it is reasonable to say:

Reasons to abandon SQL in any given area usually start:

Some would further say that NoSQL is cheaper, scales better, is cooler or whatever, but given the range of NewSQL alternatives, those claims are often overstated.

Sectors where these reasons kick in include but are not limited to: Read more

November 13, 2012

The future of dashboards, if any

Business intelligence dashboards are frequently bashed. I slammed them back in 2006 and 2007. Mark Smith dropped the hammer last August. EIS, the most dashboard-like pre-1990s analytic technology, was also the most reviled. There are reasons for this disdain, but even so dashboards shouldn’t be dismissed entirely.

In essence, I’d say:

In particular: Read more

October 18, 2012

Notes on Hadoop adoption and trends

With Strata/Hadoop World being next week, there is much Hadoop discussion. One theme of the season is BI over Hadoop. I have at least 5 clients claiming they’re uniquely positioned to support that (most of whom partner with a 6th client, Tableau); the first 2 whose offerings I’ve actually written about are Teradata Aster and Hadapt. More generally, I’m hearing “Using Hadoop is hard; we’re here to make it easier for you.”

If enterprises aren’t yet happily running business intelligence against Hadoop, what are they doing with it instead? I took the opportunity to ask Cloudera, whose answers didn’t contradict anything I’m hearing elsewhere. As Cloudera tells it (approximately — this part of the conversation* was rushed):   Read more

September 24, 2012

Notes on Hadoop adoption

I successfully resisted telephone consulting while on vacation, but I did do some by email. One was on the oft-recurring subject of Hadoop adoption. I think it’s OK to adapt some of that into a post.

Notes on past and current Hadoop adoption include:

Thoughts on how Hadoop adoption will look going forward include: Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.