Predictive modeling and advanced analytics

Discussion of technologies and vendors in the overlapping areas of predictive analytics, predictive modeling, data mining, machine learning, Monte Carlo analysis, and other “advanced” analytics.

December 10, 2015

Readings in Database Systems

Mike Stonebraker and Larry Ellison have numerous things in common. If nothing else:

I mention the latter because there’s a new edition of Readings in Database Systems, aka the Red Book, available online, courtesy of Mike, Joe Hellerstein and Peter Bailis. Besides the recommended-reading academic papers themselves, there are 12 survey articles by the editors, and an occasional response where, for example, editors disagree. Whether or not one chooses to tackle the papers themselves — and I in fact have not dived into them — the commentary is of great interest.

But I would not take every word as the gospel truth, especially when academics describe what they see as commercial market realities. In particular, as per my quip in the first paragraph, the data warehouse market has not yet gone to the extremes that Mike suggests,* if indeed it ever will. And while Joe is close to correct when he says that the company Essbase was acquired by Oracle, what actually happened is that Arbor Software, which made Essbase, merged with Hyperion Software, and the latter was eventually indeed bought by the giant of Redwood Shores.**

*When it comes to data warehouse market assessment, Mike seems to often be ahead of the trend.

**Let me interrupt my tweaking of very smart people to confess that my own commentary on the Oracle/Hyperion deal was not, in retrospect, especially prescient.

Mike pretty much opened the discussion with a blistering attack against hierarchical data models such as JSON or XML. To a first approximation, his views might be summarized as:  Read more

December 1, 2015

Machine learning’s connection to (the rest of) AI

This is part of a four post series spanning two blogs.

1. I think the technical essence of AI is usually:

Of course, a lot of non-AI software can be described the same way.

To check my claim, please consider:

To see why it’s true from a bottom-up standpoint, please consider the next two points.

2. It is my opinion that most things called “intelligence” — natural and artificial alike — have a great deal to do with pattern recognition and response. Examples of what I mean include:  Read more

November 19, 2015

CDH 5.5

I talked with Cloudera shortly ahead of today’s announcement of Cloudera 5.5. Much of what we talked about had something or other to do with SQL data management. Highlights include:

While I had Cloudera on the phone, I asked a few questions about Impala adoption, specifically focused on concurrency. There was mention of: Read more

October 26, 2015

Differentiation in data management

In the previous post I broke product differentiation into 6-8 overlapping categories, which may be abbreviated as:

and sometimes also issues in adoption and administration.

Now let’s use this framework to examine two market categories I cover — data management and, in separate post, business intelligence.

Applying this taxonomy to data management:
Read more

October 26, 2015

Sources of differentiation

Obviously, a large fraction of what I write about involves technical differentiation. So let’s try for a framework where differentiation claims can be placed in context. This post will get through the generalities. The sequels will apply them to specific cases.

Many buying and design considerations for IT fall into six interrelated areas:  Read more

September 28, 2015

Introduction to Cloudera Kudu

This is part of a three-post series on Kudu, a new data storage system from Cloudera.

Cloudera is introducing a new open source project, Kudu,* which from Cloudera’s standpoint is meant to eventually become the single best underpinning for analytics on the Hadoop stack. I’ve spent multiple hours discussing Kudu with Cloudera, mainly with Todd Lipcon. Any errors are of course entirely mine.

*Like the impala, the kudu is a kind of antelope. I knew that, because I enjoy word games. What I didn’t know — and which is germane to the naming choice — is that the kudu has stripes. 🙂

For starters:

Read more

September 17, 2015

Rocana’s world

For starters:

Rocana portrays itself as offering next-generation IT operations monitoring software. As you might expect, this has two main use cases:

Rocana’s differentiation claims boil down to fast and accurate anomaly detection on large amounts of log data, including but not limited to:

Read more

September 14, 2015

DataStax and Cassandra update

MongoDB isn’t the only company I reached out to recently for an update. Another is DataStax. I chatted mainly with Patrick McFadin, somebody with whom I’ve had strong consulting relationships at a user and vendor both. But Rachel Pedreschi contributed the marvelous phrase “twinkling dashboard”.

It seems fair to say that in most cases:

Those generalities, in my opinion, make good technical sense. Even so, there are some edge cases or counterexamples, such as:

*And so a gas company is doing lightweight analysis on boiler temperatures, which it regards as hot data. 🙂

While most of the specifics are different, I’d say similar things about MongoDB, Cassandra, or any other NoSQL DBMS that comes to mind: Read more

July 7, 2015

Zoomdata and the Vs

Let’s start with some terminology biases:

So when my clients at Zoomdata told me that they’re in the business of providing “the fastest visual analytics for big data”, I understood their choice, but rolled my eyes anyway. And then I immediately started to check how their strategy actually plays against the “big data” Vs.

It turns out that:

*The HDFS/S3 aspect seems to be a major part of Zoomdata’s current story.

Core aspects of Zoomdata’s technical strategy include:  Read more

June 14, 2015

“Chilling effects” revisited

In which I observe that Tim Cook and the EFF, while thankfully on the right track, haven’t gone nearly far enough.

Traditionally, the term “chilling effect” referred specifically to inhibitions on what in the US are regarded as First Amendment rights — the freedoms of speech, the press, and in some cases public assembly. Similarly, when the term “chilling effect” is used in a surveillance/privacy context, it usually refers to the fear that what you write or post online can later be held against you. This concern has been expressed by, among others, Tim Cook of Apple, Laura Poitras, and the Electronic Frontier Foundation, and several research studies have supported the point.

But that’s only part of the story. As I wrote in July, 2013,

… with the new data collection and analytic technologies, pretty much ANY action could have legal or financial consequences. And so, unless something is done, “big data” privacy-invading technologies can have a chilling effect on almost anything you want to do in life.

The reason, in simplest terms, is that your interests could be held against you. For example, models can estimate your future health, your propensity for risky hobbies, or your likelihood of changing your residence, career, or spouse. Any of these insights could be useful to employers or financial services firms, and not in a way that redounds to your benefit. And if you think enterprises (or governments) would never go that far, please consider an argument from the sequel to my first “chilling effects” post: Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.