Data warehousing

Analysis of issues in data warehousing, with extensive coverage of database management systems and data warehouse appliances that are optimized to query large volumes of data. Related subjects include:

March 26, 2013

Platfora at the time of first GA

Well-resourced Silicon Valley start-ups typically announce their existence multiple times. Company formation, angel funding, Series A funding, Series B funding, company launch, product beta, and product general availability may not be 7 different “news events”, but they’re apt to be at least 3-4. Platfora, no exception to this rule, is hitting general availability today, and in connection with that I learned a bit more about what they are up to.

In simplest terms, Platfora offers exploratory business intelligence against Hadoop-based data. As per last weekend’s post about exploratory BI, a key requirement is speed; and so far as I can tell, any technological innovation Platfora offers relates to the need for speed. Specifically, I drilled into Platfora’s performance architecture on the query processing side (and associated data movement); Platfora also brags of rendering 100s of 1000s of “marks” quickly in HTML5 visualizations, but I haven’t a clue as to whether that’s much of an accomplishment in itself.

Platfora’s marketing suggests it obviates the need for a data warehouse at all; for most enterprises, of course, that is a great exaggeration. But another dubious aspect of Platfora marketing actually serves to understate the product’s merits — Platfora claims to have an “in-memory” product, when what’s really the case is that Platfora’s memory-centric technology uses both RAM and disk to manage larger data marts than could reasonably be fit into RAM alone. Expanding on what I wrote about Platfora when it de-stealthedRead more

February 21, 2013

One database to rule them all?

Perhaps the single toughest question in all database technology is: Which different purposes can a single data store serve well? — or to phrase it more technically — Which different usage patterns can a single data store support efficiently? Ted Codd was on multiple sides of that issue, first suggesting that relational DBMS could do everything and then averring they could not. Mike Stonebraker too has been on multiple sides, first introducing universal DBMS attempts with Postgres and Illustra/Informix, then more recently suggesting the world needs 9 or so kinds of database technology. As for me — well, I agreed with Mike both times. 🙂

Since this is MUCH too big a subject for a single blog post, what I’ll do in this one is simply race through some background material. To a first approximation, this whole discussion is mainly about data layouts — but only if we interpret that concept broadly enough to comprise:

To date, nobody has ever discovered a data layout that is efficient for all usage patterns. As a general rule, simpler data layouts are often faster to write, while fancier ones can boost query performance. Specific tradeoffs include, but hardly are limited to: Read more

February 13, 2013

It’s hard to make data easy to analyze

It’s hard to make data easy to analyze. While everybody seems to realize this — a few marketeers perhaps aside — some remarks might be useful even so.

Many different technologies purport to make data easy, or easier, to an analyze; so many, in fact, that cataloguing them all is forbiddingly hard. Major claims, and some technologies that make them, include:

*Complex event/stream processing terminology is always problematic.

My thoughts on all this start:  Read more

February 6, 2013

Key questions when selecting an analytic RDBMS

I recently complained that the Gartner Magic Quadrant for Data Warehouse DBMS conflates many use cases into one set of rankings. So perhaps now would be a good time to offer some thoughts on how to tell use cases apart. Assuming you know that you really want to manage your analytic database with a relational DBMS, the first questions you ask yourself could be:

Let’s drill down. Read more

February 5, 2013

Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations

To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.

Gartner seems confused about Kognitio’s products and history alike.

Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.

* non-existent

In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more

February 5, 2013

Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — concepts

The 2012 Gartner Magic Quadrant for Data Warehouse Database Management Systems is out. I’ll split my comments into two posts — this one on concepts, and a companion on specific vendor evaluations.

Links:

Let’s start by again noting that I regard Gartner Magic Quadrants as a bad use of good research. On the facts:

When it comes to evaluations, however, the Gartner Data Warehouse DBMS Magic Quadrant doesn’t do as well. My concerns (which overlap) start:

Read more

January 26, 2013

Editing code is easier than writing it

I’ve hacked both the PHP and CSS that drive this website. But if I had to write PHP or CSS from scratch, I literally wouldn’t know how to begin.

Something similar, I suspect, is broadly true of “business analysts.” I don’t know how somebody can be a competent business analyst without being able to generate, read, and edit SQL. (Or some comparable language; e.g., there surely are business analysts who only know MDX.) I would hope they could write basic SELECT statements as well.

But does that mean business analysts are comfortable with the fancy-schmantzy extended SQL that the analytic platform vendors offer them? I would assume that many are but many others are not. And thus I advised such a vendor recently to offer sample code, and lots of it — dozens or hundreds of isolated SQL statements, each of which does a specific task.* A business analyst could reasonably be expected to edit any of those to point them his own actual databases, even though he can’t necessarily be expected to easily write such statements from scratch.  Read more

December 9, 2012

Amazon Redshift and its implications

Merv Adrian and Doug Henschen both reported more details about Amazon Redshift than I intend to; see also the comments on Doug’s article. I did talk with Rick Glick of ParAccel a bit about the project, and he noted:

“We didn’t want to do the deal on those terms” comments from other companies suggest ParAccel’s main financial take from the deal is an already-reported venture investment.

The cloud-related engineering was mainly around communications, e.g. strengthening error detection/correction to make up for the lack of dedicated switches. In general, Rick seemed more positive on running in the (Amazon) cloud than analytic RDBMS vendors have been in the past.

So who should and will use Amazon Redshift? For starters, I’d say: Read more

December 9, 2012

ParAccel update

In connection with Amazon’s Redshift announcement, ParAccel reached out, and so I talked with them for the first time in a long while. At the highest level:

There wasn’t time for a lot of technical detail, but I gather that the bit about working alongside other data stores:

Also, it seems that ParAccel:

Read more

November 29, 2012

Notes on Microsoft SQL Server

I’ve been known to gripe that covering big companies such as Microsoft is hard. Still, Doug Leland of Microsoft’s SQL Server team checked in for phone calls in August and again today, and I think I got enough to be worth writing about, albeit at a survey level only,

Subjects I’ll mention include:

One topic I can’t yet comment about is MOLAP/ROLAP, which is a pity; if anybody can refute my claim that ROLAP trumps MOLAP, it’s either Microsoft or Oracle.

Microsoft’s slides mentioned Yahoo refining a 6 petabyte Hadoop cluster into a 24 terabyte SQL Server “cube”, which was surprising in light of Yahoo’s history as an Oracle reference.

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.