Data warehousing
Analysis of issues in data warehousing, with extensive coverage of database management systems and data warehouse appliances that are optimized to query large volumes of data. Related subjects include:
Hadoop news and rumors, June 23, 2013
Cloudera
- Cloudera changed CEOs last week. Tom Reilly, late of ArcSight, is the new guy (I don’t know him), while Mike Olson’s titles become Chairman and Chief Strategy Officer. Mike told me Friday that Reilly had secretly been working with him for months.
- Mike shared good-sounding numbers with me. But little is for public disclosure except the stat >400 employees.
- There are always rumors of infighting at Cloudera, perhaps because from earliest days Cloudera was a place where tempers are worn on sleeves. That said, Mike denied stories of problems between him and COO Kirk Dunn, and greatly praised Kirk’s successes at large-account sales.
- Cloudera now self-identifies pretty clearly as an analytic data management company. The vision is multiple execution engines – MapReduce, Impala, something more memory-centric, etc. – talking to any of a variety of HDFS file formats. While some formats may be optimized for specific engines – e.g. Parquet for Impala – anything can work with more or less anything.*
- Mike told me that Cloudera didn’t have any YARN users in production, but thought there would be some by year-end. Even so, he thinks it’s fair to say that Cloudera users have substantial portions of Hadoop 2 in production, for example NameNode failover and HDFS (Hadoop Distributed File System) performance enhancements. Ditto HCatalog.
*Of course, there will always be exceptions. E.g., some formats can be updated on a short-request basis, while others can only be written to via batch conversions.
Everybody else
- There’s a widespread belief that Hortonworks is being shopped. Numerous folks – including me — believe the rumor of an Intel offer for $700 million. Higher figures and alternate buyers aren’t as widely believed.
- Views of MapR market traction, never high, are again on the downswing.
- IBM Big Insights seems to have some traction.
- In case there was any remaining doubt — DBMS vendors are pretty unanimous in agreeing that it makes sense to have Hadoop too. To my knowledge SAP hasn’t been as clear about showing a markitecture incorporating Hadoop as most of the others have … but then, SAP’s markitecture is generally less clear than other vendors’.
- Folks I talk with are generally wondering where and why Datameer lost its way. That still leaves Datameer ahead of other first-generation Hadoop add-on vendors (Karmasphere, Zettaset, et al.), in that I rarely hear them mentioned at all.
- I visited with my client Platfora. Things seem to be going very well.
- My former client Revelytix seems to have racked up some nice partnerships. (I had something to do with that. :))
Categories: Cloudera, Data warehousing, Datameer, Hadoop, Hortonworks, IBM and DB2, Intel, MapR, Market share and customer counts, Platfora, SAP AG, Zettaset | 11 Comments |
Impala and Parquet
I visited Cloudera Friday for, among other things, a chat about Impala with Marcel Kornacker and colleagues. Highlights included:
- Impala is meant to someday be a competitive MPP (Massively Parallel Processing) analytic RDBMS.
- At the moment, it is not one. For example, Impala lacks any meaningful form of workload management or query optimization.
- While Impala will run against any HDFS (Hadoop Distributed File System) file format, claims of strong performance assume that the data is in Parquet …
- … which is the replacement for the short-lived Trevni …
- … and which for most practical purposes is true columnar.
- Impala is also meant to be more than an RDBMS; Parquet and presumably in the future Impala can accommodate nested data structures.
- Just as Impala runs against most or all HDFS file formats, Parquet files can be used by most Hadoop execution engines, and of course by Pig and Hive.
- The Impala roadmap includes workload management, query optimization, data skipping, user-defined functions, hash distribution, two turtledoves, and a partridge in a pear tree.
Data gets into Parquet via batch jobs only — one reason it’s important that Impala run against multiple file formats — but background format conversion is another roadmap item. A single table can be split across multiple formats — e.g., the freshest data could be in HBase, with the rest is in Parquet.
Dave DeWitt responds to Daniel Abadi
A few days ago I posted Daniel Abadi’s thoughts in a discussion of Hadapt, Microsoft PDW (Parallel Data Warehouse)/PolyBase, Pivotal/Greenplum Hawq, and other SQL-Hadoop combinations. This is Dave DeWitt’s response. Emphasis mine.
Read more
Categories: Benchmarks and POCs, Cloudera, Clustering, Data warehousing, Greenplum, Hadapt, Hadoop, MapReduce, Microsoft and SQL*Server, PostgreSQL, SQL/Hadoop integration | 6 Comments |
SQL-Hadoop architectures compared
The genesis of this post is:
- Dave DeWitt sent me a paper about Microsoft Polybase.
- I argued with Dave about the differences between Polybase and Hadapt.
- I asked Daniel Abadi for his opinion.
- Dan agreed with Dave, in a long email …
- … that he graciously permitted me to lightly-edit and post.
I love my life.
Per Daniel (emphasis mine): Read more
Categories: Aster Data, Data warehousing, Greenplum, Hadapt, Hadoop, MapReduce, Microsoft and SQL*Server, SQL/Hadoop integration, Theory and architecture | 13 Comments |
IBM BLU
I had a good chat with IBM about IBM BLU, aka BLU Accelerator or Acceleration. BLU basics start:
- BLU is a part of DB2.
- BLU works like a columnar analytic DBMS.
- If you want to do a join combining BLU and non-BLU tables, all the BLU tables are joined first, and the result set is joined to the other tables by the rest of DB2.
And yes — that means Oracle is now the only major relational DBMS vendor left without a true columnar story.
BLU’s maturity and scalability basics start:
- BLU is coming out in IBM DB2 10.5, this quarter.
- BLU will initially be single-server, but …
- … IBM claims “near-linear” scalability up to 64 cores, and further says that …
- … scale-out for BLU is coming “soon”.
- IBM already thinks all your analytically-oriented DB2 tables should be in BLU.
- IBM describes the first version of BLU as being optimized for 10 TB databases, but capable of handling 20 TB.
BLU technical highlights include: Read more
Categories: Columnar database management, Data pipelining, Data warehousing, Database compression, IBM and DB2, Workload management | 20 Comments |
Data skipping
Way back in 2006, I wrote about a cool Netezza feature called the zone map, which in essence allows you to do partition elimination even in the absence of strict range partitioning.
Netezza’s substitute for range partitioning is very simple. Netezza features “zone maps,” which note the minimum and maximum of each column value (if such concepts are meaningful) in each extent. This can amount to effective range partitioning over dates; if data is added over time, there’s a good chance that the data in any particular date range is clustered, and a zone map lets you pick out which data falls in the desired data range.
I further wrote
… that seems to be the primary scenario in which zone maps confer a large benefit.
But I now think that part was too pessimistic. For example, in bulk load scenarios, it’s easy to imagine ways in which data can be clustered or skewed. And in such cases, zone maps can let you skip a large fraction of potential I/O.
Over the years I’ve said that other things were reminiscent of Netezza zone maps, e.g. features of Infobright, SenSage, InfiniDB and even Microsoft SQL Server. But truth be told, when I actually use the phrase “zone map”, people usually give me a blank look.
In a recent briefing about BLU, IBM introduced me to a better term — data skipping. I like it and, unless somebody comes up with a good reason not to, I plan to start using it myself. 🙂
Categories: Data warehousing, IBM and DB2, Netezza, Theory and architecture | 12 Comments |
Goodbye VectorWise, farewell ParAccel?
Actian, which already owns VectorWise, is also buying ParAccel. The argument for why this kills VectorWise is simple. ParAccel does most things VectorWise does, more or less as well. It also does a lot more:
- ParAccel scales out.
- ParAccel has added analytic platform capabilities.
- I don’t know for sure, but I’d guess ParAccel has more mature management/plumbing capabilities as well.
One might conjecture that ParAccel is bad at highly concurrent, single-node use cases, and VectorWise is better at them — but at the link above, ParAccel bragged of supporting 5,000 concurrent connections. Besides, if one is just looking for a high-use reporting server, why not get Sybase IQ?? Anyhow, Actian hasn’t been investing enough in VectorWise to make it a major market player, and they’re unlikely to start now that they own ParAccel as well.
But I expect ParAccel to fail too. Reasons include:
- ParAccel’s small market share and traction.
- The disruption of any acquisition like this one.
- My general view of Actian as a company.
Categories: Actian and Ingres, Columnar database management, Data warehousing, HP and Neoview, ParAccel, Sybase, VectorWise, Vertica Systems | 10 Comments |
Notes on Teradata systems
Teradata is announcing its new high-end systems, the Teradata 6700 series. Notes on that include:
- Teradata tends to get 35-55% (roughly speaking) annual performance improvements, as measured by its internal blended measure Tperf. A big part of this is exploiting new-generation Intel processors.
- This year the figure is around 40%.
- The 6700 is based on Intel’s Sandy Bridge.
- Teradata previously told me that Ivy Bridge — the next one after Sandy Bridge — could offer a performance “discontinuity”. So, while this is just a guess, I expect that next year’s Teradata performance improvement will beat this year’s.
- Teradata has now largely switched over to InfiniBand.
Teradata is also talking about data integration and best-of-breed systems, with buzzwords such as:
- Teradata Unified Data Architecture.
- Fabric-based computing, even though this isn’t really about storage.
- Teradata SQL-H.
Categories: Data integration and middleware, Data warehouse appliances, Data warehousing, Pricing, SAS Institute, Teradata | 3 Comments |
Teradata SQL-H
As vendors so often do, Teradata has caused itself some naming confusion. SQL-H was introduced as a facility of Teradata Aster, to complement SQL-MR.* But while SQL-MR is in essence a set of SQL extensions, SQL-H is not. Rather, SQL-H is a transparency interface that makes Hadoop data responsive to the same code that would work on Teradata Aster …
*Speaking of confusion — Teradata Aster seems to use the spellings SQL/MR and SQL-MR interchangeably.
… except that now there’s also a SQL-H for regular Teradata systems as well. While it has the same general features and benefits as SQL-H for Teradata Aster, the details are different, since the underlying systems are.
I hope that’s clear. 🙂
Categories: Data integration and middleware, Data warehousing, Emulation, transparency, portability, Hadoop, SQL/Hadoop integration, Teradata | 2 Comments |
Some notes on new-era data management, March 31, 2013
Hmm. I probably should have broken this out as three posts rather than one after all. Sorry about that.
Performance confusion
Discussions of DBMS performance are always odd, for starters because:
- Workloads and use cases vary greatly.
- In particular, benchmarks such as the YCSB or TPC-H aren’t very helpful.
But in NoSQL/NewSQL short-request processing performance claims seem particularly confused. Reasons include but are not limited to:
- It’s common for databases or at least working sets to be entirely in RAM — but it’s not always required.
- Consistency and durability models vary. What’s more, in some systems — e.g. MongoDB — there’s considerable flexibility as to which model you use.
- In particular, there’s an increasingly common choice in which data is written synchronously to RAM on 2 or more servers, then asynchronously to disk on each of them. Performance in these cases can be quite different from when all writes need to be committed to disk. Of course, you need sufficient disk I/O to keep up, so SSDs (Solid-State Drives) can come in handy.
- Many workloads are inherently single node (replication aside). Others are not.
MongoDB and 10gen
I caught up with Ron Avnur at 10gen. Technical highlights included: Read more